全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类带有未知项的随机非完整系统的有限时间控制问题研究
Research on Finite-Time Control for a Class of Stochastic Nonholonomic Systems with Unknown Terms

DOI: 10.12677/pm.2025.155155, PP. 77-84

Keywords: 随机非完整系统,坐标变换,有限时间稳定
Stochastic Nonholonomic System
, Coordinate Transformation, Finite-Time Stabilization

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对一类具有未知时变控制系数及随机噪声干扰的不确定项的随机非完整系统,研究其有限时间稳定问题。根据系统的特性,分两阶段进行控制设计:首先基于Lyapunov理论为子系统设计保证子系统稳定的控制输入;其次,通过对系统进行坐标变换转换成新形式系统,并采用递归反推法最终设计出全局控制输入。最终设计出全局控制输入理论分析表明,闭环系统的稳定性可通过随机Lyapunov函数的负定性严格证明,且系统状态在有限时间内收敛至平衡点。
This paper investigates the finite-time stabilization problem for a class of stochastic nonholonomic systems with unknown time-varying control coefficients and stochastic noise disturbances. Based on the system characteristics, a two-phase control design framework is proposed. First, a Lyapunov-based control input is designed for the -subsystem to ensure its stability. Subsequently, the original -system is transformed into a new structure -system via coordinate transformation, and a recursive backstepping approach is employed to synthesize the global control input . Theoretical analysis demonstrates that the closed-loop system’s stability can be rigorously proven through the negative definiteness of the stochastic Lyapunov function , ensuring probabilistic convergence of system states to the equilibrium point within a finite time. The proposed method effectively addresses uncertainties arising from time-varying control coefficients and stochastic disturbances, providing a systematic solution for finite-time stabilization of stochastic nonholonomic systems.

References

[1]  Brockett, R. (1983) Asymptotic Stability and Feedback Stabilization. Differential Geometric Control Theory, 27, 181-191.
[2]  Astolfi, A. (1996) Discontinuous Control of Nonholonomic Systems. Systems & Control Letters, 27, 37-45.
https://doi.org/10.1016/0167-6911(95)00041-0
[3]  Xu, W.L. and Huo, W. (2000) Variable Structure Exponential Stabilization of Chained Systems Based on the Extended Nonholonomic Integrator. Systems & Control Letters, 41, 225-235.
https://doi.org/10.1016/s0167-6911(00)00057-8
[4]  Murray, R.M. and Sastry, S.S. (1993) Nonholonomic Motion Planning: Steering Using Sinusoids. IEEE Transactions on Automatic Control, 38, 700-716.
https://doi.org/10.1109/9.277235
[5]  Jiang, Z. (1996) Iterative Design of Time-Varying Stabilizers for Multi-Input Systems in Chained Form. Systems & Control Letters, 28, 255-262.
https://doi.org/10.1016/0167-6911(96)00029-1
[6]  Khoo, S., Yin, J., Man, Z. and Yu, X. (2013) Finite-Time Stabilization of Stochastic Nonlinear Systems in Strict-Feedback Form. Automatica, 49, 1403-1410.
https://doi.org/10.1016/j.automatica.2013.01.054
[7]  Zhang, X. and Xie, X. (2013) Global State Feedback Stabilisation of Nonlinear Systems with High-Order and Low-Order Nonlinearities. International Journal of Control, 87, 642-652.
https://doi.org/10.1080/00207179.2013.852252
[8]  Qian, C. and Lin, W. (2001) Non-Lipschitz Continuous Stabilizers for Nonlinear Systems with Uncontrollable Unstable Linearization. Systems & Control Letters, 42, 185-200.
https://doi.org/10.1016/s0167-6911(00)00089-x
[9]  Xie, X., Duan, N. and Zhao, C. (2014) A Combined Homogeneous Domination and Sign Function Approach to Output-Feedback Stabilization of Stochastic High-Order Nonlinear Systems. IEEE Transactions on Automatic Control, 59, 1303-1309.
https://doi.org/10.1109/tac.2013.2286912
[10]  Gao, F. and Wu, Y. (2016) Global Finite-Time Stabilisation for a Class of Stochastic High-Order Time-Varying Nonlinear Systems. International Journal of Control, 89, 2453-2465.
https://doi.org/10.1080/00207179.2016.1161829

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133