全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

调和Bergman空间上斜Toeplitz算子的衍生算子
Derivative Operators of Slant Toeplitz Operators on Harmonic Bergman Spaces

DOI: 10.12677/pm.2025.155153, PP. 58-64

Keywords: 调和Bergman空间,斜Toeplitz算子,有界性,紧性
Harmonic Bergman Space
, Slant Toeplitz Operators, Boundedness, Compactness

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文给出调和Bergman空间上的斜Toeplitz算子和其衍生算子的概念,并介绍了衍生算子的积分表示、有界性和紧性。此有界性和紧性为后续研究斜Toeplitz算子的有界性和紧性提供了研究方法。
In this paper, the concepts of slant Toeplitz operators and its derivative operators on harmonic Bergman Spaces are given, and the integral representation, boundness and compactness of the derivative operators are introduced. The boundedness and compactness provide a method for the subsequent studies of boundedness and compactness of slant Toeplitz operators.

References

[1]  Toeplitz, O. (1911) Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen. Mathematische Annalen, 70, 351-376.
https://doi.org/10.1007/bf01564502
[2]  Halmos, P.R. and Brown, A. (1964) Algebraic Properties of Toeplitz Operators. Journal Für Die Reine Und Angewandte Mathematik, 213, 89-102.
https://doi.org/10.1515/crll.1964.213.89
[3]  Douglas, R.G. (1972) Banach Algebra Techniques in Operator Theory. Springer, 158-178.
[4]  Mark, C.H. (1996) Properties of Slant Toeplitz Operators. Indiana University Mathematics Journal, 45, 843-862.
[5]  Mark, C.H. (1997) Spectrum of Slant Toeplitz Operators with Continuous Symbols. Michigan Mathematical Journal, 44, 157-166.
[6]  安恒斌, 蹇人宜. Bergman空间上的斜Toeplitz算子[J]. 数学学报, 2004, 47(1): 103-110.
[7]  Singh, S.K. and Gupta, A. (2017) Kth-Order Slant Toeplitz Operators on the Fock Space. Advances in Operator Theory, 2, 318-333
[8]  Hazarika, M. and Marik, S. (2020) Toeplitz and Slant Toeplitz Operators on the Polydisk. Arab Journal of Mathematical Sciences, 27, 73-93.
https://doi.org/10.1016/j.ajmsc.2019.02.003
[9]  Łanucha, B. and Michalska, M. (2022) Compressions of Kth-Order Slant Toeplitz Operators to Model Spaces. Lithuanian Mathematical Journal, 62, 69-87.
https://doi.org/10.1007/s10986-021-09548-3
[10]  Heil, C., Strang, G. and Strela, V. (1996) Approximation by Translates of Refinable Functions. Numerische Mathematik, 73, 75-94.
https://doi.org/10.1007/s002110050185
[11]  Strang, G. and Strela, V. (1995) Short Wavelets and Matrix Dilation Equations. IEEE Transactions on Signal Processing, 43, 108-115.
https://doi.org/10.1109/78.365291
[12]  Stroethoff, K. and Zheng, D. (2002) Algebraic and Spectral Properties of Dual Toeplitz Operators. Transactions of the American Mathematical Society, 354, 2495-2520.
https://doi.org/10.1090/s0002-9947-02-02954-9
[13]  Peng, Y. and Zhao, X.F. (2021) Dual Toeplitz Operators on the Orthogonal Complement of the Harmonic Bergman Space. Acta Mathematica Sinica, English Series, 37, 1143-1155.
https://doi.org/10.1007/s10114-021-0315-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133