全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assemblage of Dye-Sensitized Solar Module Using Extract of Lonchocarpus cyanescens as a Photosensitizer

DOI: 10.4236/gsc.2025.151001, PP. 1-11

Keywords: Lonchocarpus cyanescens, Photosensitizer, Solar Module, Sustainable, Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

The global challenge of power today necessitates the deployment of clean and renewable energy of which the Dye Sensitized Solar Cell (DSSC), is considered a promising technology. A survey of the literature shows that efforts in the development of dye sensitized solar modules are unimpressive despite the high demand of silicon solar modules. A dye sensitized solar module was fabricated in this study using dye extract from the leaves of Lonchocarpus cyanescens (LC), plant. A Power conversion efficiency of 0.120% was obtained for a single solar cell and a maximum power of 0. 183 μW from twenty-four solar cells connected in series. This result shows that Lonchocarpus cyanescens is a potential resource for the fabrication of cheap dye sensitized solar cells and modules in accordance with item 7 of the government’s Sustainable Development Goals (SDGs), the provision of affordable and clean energy.

References

[1]  Iddrisu, I. and Bhattacharyya, S.C. (2015) Sustainable Energy Development Index: A Multi-Dimensional Indicator for Measuring Sustainable Energy Development. Renewable and Sustainable Energy Reviews, 50, 513-530.
https://doi.org/10.1016/j.rser.2015.05.032
[2]  Cheng, X., Chen, J., Jiang, S., Dai, Y., Zeng, J., Shuai, C., et al. (2021) Pursuing Sustainable Development Goals: A Review of Renewable Energy and Poverty Alleviation Nexus. Environmental Development, 40, Article 100679.
https://doi.org/10.1016/j.envdev.2021.100679
[3]  EIA (2013) Today in Energy. US Energy Information Administration.
[4]  IEA (2023) Electricity.
https://www.iea.org/energy-system/electricity
[5]  Mariotti, N., Bonomo, M., Fagiolari, L., Barbero, N., Gerbaldi, C., Bella, F., et al. (2020) Recent Advances in Eco-Friendly and Cost-Effective Materials Towards Sustainable Dye-Sensitized Solar Cells. Green Chemistry, 22, 7168-7218.
https://doi.org/10.1039/d0gc01148g
[6]  Sharma, K., Sharma, V. and Sharma, S.S. (2018) Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Research Letters, 13, Article No. 381.
https://doi.org/10.1186/s11671-018-2760-6
[7]  Francis, O.I. and Ikenna, A. (2021) Review of Dye-Sensitized Solar Cell (DSSCs) Development. Natural Science, 13, 496-509.
https://doi.org/10.4236/ns.2021.1312043
[8]  Radhakrishnan, S. and Sri, S. (2011) Natural Photosensitizers on TiO2 Films for Dye-Sensitized Solar Cells. Asian Journal of Research Chemistry, 4, 621-625.
[9]  Kharboot, L.H., Fadil, N.A., Baker, T.A., Najib, A.S. and Nordin, N.H. (2022) The Quantum Dot Sensitized Solar Cells (QDSSCs): A Review on Recent Achievements (2010-2021). Proceedings of the 3rd Asia Pacific International Conference on In-dustrial Engineering and Operation Management, Johor Bahru, 13-15 September 2022, 4144-4160.
[10]  Gerischer, H. and Tributsch, H. (1968) Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO‐Einkristallen. Berichte der Bunsengesellschaft für physikalische Chemie, 72, 437-445.
https://doi.org/10.1002/bbpc.196800013
[11]  Castillo-Robles, J.A., Rocha-Rangel, E., Ramírez-de-León, J.A., Caballero-Rico, F.C. and Armendáriz-Mireles, E.N. (2021) Advances on Dye-Sensitized Solar Cells (DSSCs) Nanostructures and Natural Colorants: A Review. Journal of Composites Science, 5, Article 288.
https://doi.org/10.3390/jcs5110288
[12]  Michels, L., Richter, A., Chellappan, R.K., Røst, H.I., Behsen, A., Wells, K.H., et al. (2021) Electronic and Structural Properties of the Natural Dyes Curcumin, Bixin and Indigo. RSC Advances, 11, 14169-14177.
https://doi.org/10.1039/d0ra08474c
[13]  Wang, X., Li, Z., Shi, J. and Yu, Y. (2014) One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts. Chemical Reviews, 114, 9346-9384.
https://doi.org/10.1021/cr400633s
[14]  Tributsch, H. (2008) Reaction of Excited ChlorophyLL Molecules at Electrodes and in Photosynthesis. Photochemistry and Photobiology, 16, 261-269.
https://doi.org/10.1111/j.1751-1097.1972.tb06297.x
[15]  Carella, A., Borbone, F. and Centore, R. (2018) Research Progress on Photosensitizers for DSSc. Frontiers in Chemistry, 6, Article 481.
https://doi.org/10.3389/fchem.2018.00481
[16]  Hug, H., Bader, M., Mair, P. and Glatzel, T. (2014) Biophotovoltaics: Natural Pigments in Dye-Sensitized Solar Cells. Applied Energy, 115, 216-225.
https://doi.org/10.1016/j.apenergy.2013.10.055
[17]  Hao, S., Wu, J., Huang, Y. and Lin, J. (2006) Natural Dyes as Photosensitizers for Dye-Sensitized Solar Cell. Solar Energy, 80, 209-214.
https://doi.org/10.1016/j.solener.2005.05.009
[18]  Yazie, N., Worku, D. and Reda, A. (2016) Natural Dye as Light-Harvesting Pigments for Quasi-Solid-State Dye-Sensitized Solar Cells. Materials for Renewable and Sustainable Energy, 5, Article No. 13.
https://doi.org/10.1007/s40243-016-0077-x
[19]  Kim, T., Park, K., Lee, J., Han, S. and Cho, S. (2014) Adsorption Equilibrium and Kinetics of Gardenia blue on TiO2 Photoelectrode for Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2014, Article 429312.
https://doi.org/10.1155/2014/429312
[20]  Nam, S., Lee, K.H., Yu, J. and Boo, J. (2019) Review of the Development of Dyes for Dye-Sensitized Solar Cells. Applied Science and Convergence Technology, 28, 194-206.
https://doi.org/10.5757/asct.2019.28.6.194
[21]  Sandquist, C. and McHale, J.L. (2011) Improved Efficiency of Betanin-Based Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry, 221, 90-97.
https://doi.org/10.1016/j.jphotochem.2011.04.030
[22]  Fakharuddin, A., Jose, R., Brown, T.M., Fabregat-Santiago, F. and Bisquert, J. (2014) A Perspective on the Production of Dye-Sensitized Solar Modules. Energy Environ. Sci., 7, 3952-3981.
https://doi.org/10.1039/c4ee01724b
[23]  Ezeh, M.I., Osuji, R.U., Azi, S.O. and Egwuanunkwu, D. (2013) Comparison between the Performance of Anthocaynin Dye with Methythionium. Journal of Nigerian Association of Mathematical Physics, 24, 365-370.
[24]  Shah, S.S., Hamid, S.A., Kamal, N.L., Norhashim, N., Sahwee, Z., Azaldin, A.R. and Zolkifli, M.I. (2021) Experimental Evaluation of Solar Charge Controller Installed in a Solar-Powered Unmanned Aerial Vehicle (UAV). Defence S & T Technical Bulletin, 14, 198-210.
[25]  Sofowora, A. (1993) Medicinal Plant and Traditional Medicine in Africa. 2nd Edition, John Wiley & Sons, Inc.
[26]  Olugbuyiro, J.A.O., Omotosho, O.E., Taiwo, O.S., Ononiwu, F.O., Banwo, A.S., Akintokun, O.A., Obaseki, O.S. and Ogunleye, O.M. (2017) Antimicrobial Activities and Phytochemical Studies of Annona Muricata Leaf. Covenant Journal of Physical & Life Sciences, 5, 1-10.
[27]  Shalini, S., Prabavathy, N., Balasundaraprabhu, R., Kumar, T.S., Velauthapillai, D., Balraju, P., et al. (2018) Studies on DSSC Encompassing Flower Shaped Assembly of Na-Doped TiO2 Nanorods Sensitized with Extract from Petals of Kigelia Africana. Optik, 155, 334-343.
https://doi.org/10.1016/j.ijleo.2017.10.173
[28]  Wang, H., Su, C., Chen, H., Liu, Y., Hsu, Y., Hsu, N., et al. (2011) Preparation of Nanoporous TiO2 Electrodes for Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2011, Article 547103.
https://doi.org/10.1155/2011/547103
[29]  Saleem, H. and Habib, A. (2016) Study of Band Gap Reduction of TiO2 Thin Films with Variation in GO Contents and Use of TiO2/Graphene Composite in Hybrid Solar Cell. Journal of Alloys and Compounds, 679, 177-183.
https://doi.org/10.1016/j.jallcom.2016.03.240
[30]  Ikedi, C. (2019) Experimental Study of Current-Voltage Characteristics for Fixed and Solar Tracking Photovoltaics Systems. IntechOpen.
https://doi.org/10.5772/intechopen.79710
[31]  Abodunrin, T., Uhuegbu, C. and Olugbuyiro, J. (2015) Phytochemical Analysis of Leaf Extracts of Eight Tropical Trees: Prospects for Environmentally Friendly Dyes for Smart windows. International Journal of Scientific and Engineering Research, 6, 682-698.
[32]  Bassey, R.B., Bakare, A.A., Osinubi, A.A. and Oremosu, A.A. (2012) Staining Properties of Lonchocarpus Cyanescens on the Testes. Open Science Scientific Result, 1, 1-5.
[33]  Smestad, G.P. and Gratzel, M. (1998) Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter. Journal of Chemical Education, 75, 752.
https://doi.org/10.1021/ed075p752
[34]  Cherepy, N.J., Smestad, G.P., Grätzel, M. and Zhang, J.Z. (1997) Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode. The Journal of Physical Chemistry B, 101, 9342-9351.
https://doi.org/10.1021/jp972197w
[35]  Polo, A. and Murakamiiha, N. (2006) Blue Sensitizers for Solar Cells: Natural Dyes from Calafate and Jaboticaba. Solar Energy Materials and Solar Cells, 90, 1936-1944.
https://doi.org/10.1016/j.solmat.2006.02.006
[36]  Khumbar, C. (2023) How Is Solar Panel Efficiency Measured? Technical Report.
https://eepower.com/technical-articles/how-is-solar-panel-efficiency-measured/#
[37]  Gorn, G., Zama, I., Martelli, C. and Armiento, L. (2019) Fabrication of Dye-Sensitized Solar Modules Based on Prototyping Pilot Line and Their Integration into Energy Storage Microsystems. Journal of the European Ceramic Society, 39, 85-91.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133