Total Hip Arthroplasty (THA) is one of the only available treatments for numerous hip pathologies. Hip protheses do not last for a lifetime. As the age of first implantation increases and the patient pool increases, extending the lifespan of the prothesis is becoming of major societal and economic importance. The main cause of failure, after infection, is aseptic loosening, referring to the resorption of the bone near the implant. To tackle this issue, a precise understanding and simulation of the bone response is needed. Numerous remodeling and healing models exist, and each illustrates different biological phenomena. Creating a model accounting for both processes could help better understand the bone reaction and better predict its reaction to implantation. This article proposes to present a state-of-the art of both the remodeling and healing law, with their respective specificity. The aim is to help select models the most suited to each specific study and to start the discussion concerning models for linking healing and remodeling.
References
[1]
Rony, L., Lancigu, R. and Hubert, L. (2018) Intraosseous Metal Implants in Orthopedics: A Review. Morphologie, 102, 231-242. https://doi.org/10.1016/j.morpho.2018.09.003
[2]
Industry Report (2019) Healthcare Additive Manufacturing Market Size.
[3]
Sundfeldt, M., V Carlsson, L., B Johansson, C., Thomsen, P. and Gretzer, C. (2006) Aseptic Loosening, Not Only a Question of Wear: A Review of Different Theories. Acta Orthopaedica, 77, 177-197. https://doi.org/10.1080/17453670610045902
[4]
McCarthy, C., Steinberg, G., Agren, M., Leahey, D., Wyman, E. and Baran, D. (1991) Quantifying Bone Loss from the Proximal Femur after Total Hip Arthroplasty. The Journal of Bone and Joint Surgery. British Volume, 73, 774-778. https://doi.org/10.1302/0301-620x.73b5.1894664
[5]
Huiskes, R., Weinans, H. and Rietbergen, B.V. (1992) The Relationship between Stress Shielding and Bone Resorption around Total Hip Stems and the Effects of Flexible Materials. Clinical Orthopaedics and Related Research, 274, 124-134. https://doi.org/10.1097/00003086-199201000-00014
[6]
Ambard, D. and Swider, P. (2006) A Predictive Mechano-Biological Model of the Bone-Implant Healing. European Journal of Mechanics-A/Solids, 25, 927-937. https://doi.org/10.1016/j.euromechsol.2006.02.006
[7]
Viceconti, M., Pancanti, A., Varini, E., Traina, F. and Cristofolini, L. (2006) On the Biomechanical Stability of Cementless Straight Conical Hip Stems. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 220, 473-480. https://doi.org/10.1243/09544119h06904
[8]
Patton, K., Thibodeau, G. and Hutton, A. (2016) Anatomy and Physiology.
[9]
Caouette, C., Bureau, M.N., Vendittoli, P., Lavigne, M. and Nuño, N. (2015) Influence of the Stem Fixation Scenario on Load Transfer in a Hip Resurfacing Arthroplasty with a Biomimetic Stem. Journal of the Mechanical Behavior of Biomedical Materials, 45, 90-100. https://doi.org/10.1016/j.jmbbm.2015.01.015
[10]
Taylor, E.A. and Donnelly, E. (2020) Raman and Fourier Transform Infrared Imaging for Characterization of Bone Material Properties. Bone, 139, Article ID: 115490. https://doi.org/10.1016/j.bone.2020.115490
[11]
Dicati, G.W.O., Gubaua, J.E. and Pereira, J.T. (2022) Optimum Parameters for Each Subject in Bone Remodeling Models: A New Methodology Using Surrogate and Clinical Data. European Journal of Mechanics-A/Solids, 91, Article ID: 104409. https://doi.org/10.1016/j.euromechsol.2021.104409
[12]
Garcı́a, J.M., Doblaré, M. and Cegoñino, J. (2002) Bone Remodelling Simulation: A Tool for Implant Design. Computational Materials Science, 25, 100-114. https://doi.org/10.1016/s0927-0256(02)00254-9
[13]
Sikavitsas, V.I., Temenoff, J.S. and Mikos, A.G. (2001) Biomaterials and Bone Mechanotransduction. Biomaterials, 22, 2581-2593. https://doi.org/10.1016/s0142-9612(01)00002-3
[14]
Rame, A. and Therond, S. (2018) Les os, les muscles, les articulations. Anat. Physiol. Aide-Soignant Aux. Puériculture.
[15]
Baura, G.D. (2012) Total Hip Prostheses. In: Baura, G.D., Ed., Medical Device Technologies, Elsevier, 381-404. https://doi.org/10.1016/b978-0-12-374976-5.00018-9
[16]
Libouban, H. (2008) Le remodelage osseux. 3-8.
[17]
Dougherty, G. (1996) Quantitative CT in the Measurement of Bone Quantity and Bone Quality for Assessing Osteoporosis. Medical Engineering & Physics, 18, 557-568. https://doi.org/10.1016/1350-4533(96)00011-2
[18]
Isaksson, H. (2012) Recent Advances in Mechanobiological Modeling of Bone Regeneration. Mechanics Research Communications, 42, 22-31. https://doi.org/10.1016/j.mechrescom.2011.11.006
[19]
Bailón-Plaza, A. and Van der Meulen, M.C.H. (2001) A Mathematical Framework to Study the Effects of Growth Factor Influences on Fracture Healing. Journal of Theoretical Biology, 212, 191-209. https://doi.org/10.1006/jtbi.2001.2372
[20]
Prendergast, P.J., Huiskes, R. and Søballe, K. (1997) Biophysical Stimuli on Cells during Tissue Differentiation at Implant Interfaces. Journal of Biomechanics, 30, 539-548. https://doi.org/10.1016/s0021-9290(96)00140-6
[21]
Herrera, A., Panisello, J.J., Ibarz, E., Cegoñino, J., Puértolas, J.A. and Gracia, L. (2009) Comparison between DEXA and Finite Element Studies in the Long-Term Bone Remodeling of an Anatomical Femoral Stem. Journal of Biomechanical Engineering, 131, Article ID: 041013. https://doi.org/10.1115/1.3072888
[22]
Bancroft, G.N., Sikavitsas, V.I., van den Dolder, J., Sheffield, T.L., Ambrose, C.G., Jansen, J.A., et al. (2002) Fluid Flow Increases Mineralized Matrix Deposition in 3D Perfusion Culture of Marrow Stromal Osteoblasts in a Dose-Dependent Manner. Proceedings of the National Academy of Sciences, 99, 12600-12605. https://doi.org/10.1073/pnas.202296599
[23]
Ruimerman, R., Huiskes, R., Van Lenthe, G.H. and Janssen, J.D. (2001) A Computer-Simulation Model Relating Bone-Cell Metabolism to Mechanical Adaptation of Trabecular Architecture. Computer Methods in Biomechanics and Biomedical Engineering, 4, 433-448. https://doi.org/10.1080/10255840108908019
[24]
Ghaziani, A.O., Soheilifard, R. and Kowsar, S. (2021) The Effect of Functionally Graded Materials on Bone Remodeling around Osseointegrated Trans-Femoral Prostheses. Journal of the Mechanical Behavior of Biomedical Materials, 118, Article ID: 104426. https://doi.org/10.1016/j.jmbbm.2021.104426
[25]
Jovanovi, J.D. (2004) Biomechanical Model of Vertebra Based on Bone Remodeling.
[26]
Klein-Nulend, J., Bacabac, R.G. and Mullender, M.G. (2005) Mechanobiology of Bone Tissue. PathologieBiologie, 53, 576-580. https://doi.org/10.1016/j.patbio.2004.12.005
[27]
McNamara, L.M., Van der Linden, J.C., Weinans, H. and Prendergast, P.J. (2006) Stress-Concentrating Effect of Resorption Lacunae in Trabecular Bone. Journal of Biomechanics, 39, 734-741. https://doi.org/10.1016/j.jbiomech.2004.12.027
[28]
Cowin, S.C., Moss-Salentijn, L. and Moss, M.L. (1991) Candidates for the Mechanosensory System in Bone. Journal of Biomechanical Engineering, 113, 191-197. https://doi.org/10.1115/1.2891234
[29]
Prendergast, P. (1997) Finite Element Models in Tissue Mechanics and Orthopaedic Implant Design. Clinical Biomechanics, 12, 343-366. https://doi.org/10.1016/s0268-0033(97)00018-1
[30]
Askari Rizvi, S.H., Zaheer, M.U. and Chang, S. (2022) Combined Effects of Physiotherapy Exercises and Flexible Composite Implants on the Healing of Tibial Bone Fractures. Composites Science and Technology, 223, Article ID: 109416. https://doi.org/10.1016/j.compscitech.2022.109416
[31]
Geris, L., Sloten, J.V. and Oosterwyck, H.V. (2010) Connecting Biology and Mechanics in Fracture Healing: An Integrated Mathematical Modeling Framework for the Study of Nonunions. Biomechanics and Modeling in Mechanobiology, 9, 713-724. https://doi.org/10.1007/s10237-010-0208-8
[32]
Gómez-Benito, M.J., García-Aznar, J.M., Kuiper, J.H. and Doblaré, M. (2005) Influence of Fracture Gap Size on the Pattern of Long Bone Healing: A Computational Study. Journal of Theoretical Biology, 235, 105-119. https://doi.org/10.1016/j.jtbi.2004.12.023
[33]
Checa, S. and Prendergast, P.J. (2008) A Mechanobiological Model for Tissue Differentiation That Includes Angiogenesis: A Lattice-Based Modeling Approach. Annals of Biomedical Engineering, 37, 129-145. https://doi.org/10.1007/s10439-008-9594-9
[34]
Moreo, P., García-Aznar, J.M. and Doblaré, M. (2009) Bone Ingrowth on the Surface of Endosseous Implants. Part 2: Theoretical and Numerical Analysis. Journal of Theoretical Biology, 260, 13-26. https://doi.org/10.1016/j.jtbi.2009.05.036
[35]
Shefelbine, S.J., Augat, P., Claes, L. and Simon, U. (2005) Trabecular Bone Fracture Healing Simulation with Finite Element Analysis and Fuzzy Logic. Journal of Biomechanics, 38, 2440-2450. https://doi.org/10.1016/j.jbiomech.2004.10.019
[36]
Chou, H. and Müftü, S. (2013) Simulation of Peri-Implant Bone Healing Due to Immediate Loading in Dental Implant Treatments. Journal of Biomechanics, 46, 871-878. https://doi.org/10.1016/j.jbiomech.2012.12.023
[37]
van der Meulen, M.C.H. and Huiskes, R. (2002) Why Mechanobiology? Journal of Biomechanics, 35, 401-414. https://doi.org/10.1016/s0021-9290(01)00184-1
[38]
Barkaoui, A., Ben Kahla, R., Merzouki, T. and Hambli, R. (2016) Age and Gender Effects on Bone Mass Density Variation: Finite Elements Simulation. Biomechanics and Modeling in Mechanobiology, 16, 521-535. https://doi.org/10.1007/s10237-016-0834-x
[39]
Du, J., Li, S. and Silberschmidt, V.V. (2020) Trabecular Bone Remodelling: Finite-Element Simulation. Procedia Structural Integrity, 28, 577-583. https://doi.org/10.1016/j.prostr.2020.10.067
[40]
Tsubota, K. and Adachi, T. (2005) Spatial and Temporal Regulation of Cancellous Bone Structure: Characterization of a Rate Equation of Trabecular Surface Remodeling. Medical Engineering & Physics, 27, 305-311. https://doi.org/10.1016/j.medengphy.2004.09.013
[41]
Yi, W., Wang, C. and Liu, X. (2015) A Microscale Bone Remodeling Simulation Method Considering the Influence of Medicine and the Impact of Strain on Osteoblast Cells. Finite Elements in Analysis and Design, 104, 16-25. https://doi.org/10.1016/j.finel.2015.04.007
[42]
Mathai, B., Dhara, S. and Gupta, S. (2022) Bone Remodelling in Implanted Proximal Femur Using Topology Optimization and Parameterized Cellular Model. Journal of the Mechanical Behavior of Biomedical Materials, 125, Article ID: 104903. https://doi.org/10.1016/j.jmbbm.2021.104903
[43]
Tarala, M., Janssen, D. and Verdonschot, N. (2013) Toward a Method to Simulate the Process of Bone Ingrowth in Cementless THA Using Finite Element Method. Medical Engineering & Physics, 35, 543-548. https://doi.org/10.1016/j.medengphy.2012.10.010
[44]
Hazelwood, S.J., Bruce Martin, R., Rashid, M.M. and Rodrigo, J.J. (2001) A Mechanistic Model for Internal Bone Remodeling Exhibits Different Dynamic Responses in Disuse and Overload. Journal of Biomechanics, 34, 299-308. https://doi.org/10.1016/s0021-9290(00)00221-9
[45]
Comenda, M., Quental, C., Folgado, J., Sarmento, M. and Monteiro, J. (2019) Bone Adaptation Impact of Stemless Shoulder Implants: A Computational Analysis. Journal of Shoulder and Elbow Surgery, 28, 1886-1896. https://doi.org/10.1016/j.jse.2019.03.007
[46]
Fernandes, P., Rodrigues, H. and Jacobs, C. (1999) A Model of Bone Adaptation Using a Global Optimisation Criterion Based on the Trajectorial Theory of Wolff. Computer Methods in Biomechanics and Biomedical Engineering, 2, 125-138. https://doi.org/10.1080/10255849908907982
[47]
Santos, B., Quental, C., Folgado, J., Sarmento, M. and Monteiro, J. (2018) Bone Remodelling of the Humerus after a Resurfacing and a Stemless Shoulder Arthroplasty. Clinical Biomechanics, 59, 78-84. https://doi.org/10.1016/j.clinbiomech.2018.09.009
[48]
Folgado, J., Fernandes, P.R., Guedes, J.M. and Rodrigues, H.C. (2004) Evaluation of Osteoporotic Bone Quality by a Computational Model for Bone Remodeling. Computers & Structures, 82, 1381-1388. https://doi.org/10.1016/j.compstruc.2004.03.033
[49]
Mullender, M.G., Huiskes, R. and Weinans, H. (1994) A Physiological Approach to the Simulation of Bone Remodeling as a Self-Organizational Control Process. Journal of Biomechanics, 27, 1389-1394. https://doi.org/10.1016/0021-9290(94)90049-3
[50]
Huiskes, R., Weinans, H., Grootenboer, H.J., Dalstra, M., Fudala, B. and Slooff, T.J. (1987) Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis. Journal of Biomechanics, 20, 1135-1150. https://doi.org/10.1016/0021-9290(87)90030-3
[51]
Weinans, H., Huiskes, R. and Grootenboer, H.J. (1992) The Behavior of Adaptive Bone-Remodeling Simulation Models. Journal of Biomechanics, 25, 1425-1441. https://doi.org/10.1016/0021-9290(92)90056-7
[52]
Miller, Z., Fuchs, M.B. and Arcan, M. (2002) Trabecular Bone Adaptation with an Orthotropic Material Model. Journal of Biomechanics, 35, 247-256. https://doi.org/10.1016/s0021-9290(01)00192-0
[53]
Piccinini, M., Cugnoni, J., Botsis, J., Ammann, P. and Wiskott, A. (2016) Numerical Prediction of Peri-Implant Bone Adaptation: Comparison of Mechanical Stimuli and Sensitivity to Modeling Parameters. Medical Engineering & Physics, 38, 1348-1359. https://doi.org/10.1016/j.medengphy.2016.08.008
[54]
Cheong, V.S., Fromme, P., Mumith, A., Coathup, M.J. and Blunn, G.W. (2018) Novel Adaptive Finite Element Algorithms to Predict Bone Ingrowth in Additive Manufactured Porous Implants. Journal of the Mechanical Behavior of Biomedical Materials, 87, 230-239. https://doi.org/10.1016/j.jmbbm.2018.07.019
[55]
Yadav, R.N., Sihota, P., Uniyal, P., Neradi, D., Bose, J.C., Dhiman, V., et al. (2021) Prediction of Mechanical Properties of Trabecular Bone in Patients with Type 2 Diabetes Using Damage Based Finite Element Method. Journal of Biomechanics, 123, Article ID: 110495. https://doi.org/10.1016/j.jbiomech.2021.110495
[56]
Wang, W. and Yeung, K.W.K. (2017) Bone Grafts and Biomaterials Substitutes for Bone Defect Repair: A Review. Bioactive Materials, 2, 224-247. https://doi.org/10.1016/j.bioactmat.2017.05.007
[57]
Malachanne, E., Dureisseix, D. and Jourdan, F. (2011) Numerical Model of Bone Remodeling Sensitive to Loading Frequency through a Poroelastic Behavior and Internal Fluid Movements. Journal of the Mechanical Behavior of Biomedical Materials, 4, 849-857. https://doi.org/10.1016/j.jmbbm.2011.03.004