全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进Canny算法的图像边缘检测
Image Edge Detection Based on Improved Canny Algorithm

DOI: 10.12677/jsta.2025.133057, PP. 582-591

Keywords: 自适应高斯滤波器,曲度算子,最大类间方差法,灰度梯度映射
Adaptive Gaussian Filter
, Curvature Operator, Maximum Inter-Class Variance Method, Gray Gradient Mapping

Full-Text   Cite this paper   Add to My Lib

Abstract:

鉴于传统Canny边缘检测方法对处理椒盐噪声的高敏感性、边缘梯度变化细微,以及难以精确捕捉目标轮廓边缘信息等问题,本文提出了一种将自适应高斯滤波、曲度算子、灰度梯度映射和最大类间方差法(Otsu’s method)综合运用的方法,旨在提高图像处理的效果和准确性。首先,通过精确调整高斯滤波器和扩展梯度计算邻域,平衡了去噪和保留边缘信息的需求,提高易用性和鲁棒性;其次,引入自动参数调整算法并结合其他边缘检测技术,利用并行计算技术加速处理,以提高计算效率和实时性能。与传统的边缘检测算子相比,去噪图像质量提升10%~22%,边缘评价指标提高15%~25%。该算法不仅有效去除噪声,而且在边缘提取方面表现更优秀。
In this paper, the traditional Canny edge detection algorithm is improved to deal with the problems of sensitive pepper and salt noise, small edge gradient change, and difficulty in effectively extracting the target contour edge information. The algorithm in this paper integrates adaptive Gaussian filter, curve operator, gray gradient mapping and Otsu’s Method to improve the effect and accuracy of image processing. Firstly, by precisely adjusting the Gaussian filter and extending the gradient calculation neighborhood, the need for denoising and preserving edge information is balanced, and the ease of use and robustness are improved. Secondly, the automatic parameter adjustment algorithm is introduced, and other edge detection techniques are combined to accelerate processing using parallel computing technology to improve computational efficiency and real-time performance. Compared with the traditional edge detection operator, the denoised image quality is improved by 12%~22%, and the edge evaluation index is improved by 15%~25%. This algorithm not only effectively removes noise, but also performs better in edge extraction.

References

[1]  Ramnarayan, R., Saklani, N. and Verma, V. (2019) A Review on Edge Detection Technique “Canny Edge Detection”. International Journal of Computer Applications, 178, 28-30.
https://doi.org/10.5120/ijca2019918828
[2]  Li, P. and Sun, Z. (2023) Combination of Canny Edge Detection and Deep Learning for Object Recognition. Pattern Recognition Letters, 46, 101-108.
[3]  Hoang, N. and Nguyen, Q. (2018) Metaheuristic Optimized Edge Detection for Recognition of Concrete Wall Cracks: A Comparative Study on the Performances of Roberts, Prewitt, Canny, and Sobel Algorithms. Advances in Civil Engineering, 2018, Article ID: 7163580.
https://doi.org/10.1155/2018/7163580
[4]  Zhang, H.X., Wang, C., Liu, X., et al. (2018) Image Edge Detection Algorithm and Its New Development. Computer Engineering and Applications, 54, 11-18.
[5]  黄怡静, 胡小平, 彭向前, 等. 改进Canny算子的图像边缘检测算法[J/OL]. 机械科学与技术, 1-11.
https://doi.org/10.13433/j.cnki.1003-8728.20230297, 2025-05-26.
[6]  Al-Mansor, E., Al-Jabbar, M., Ben Ishak, A. and Abdel-Khalek, S. (2023) Medical Image Edge Detection in the Framework of Quantum Representations. Alexandria Engineering Journal, 81, 234-242.
https://doi.org/10.1016/j.aej.2023.09.008
[7]  刘宇涵, 闫河, 陈早早, 等. 强噪声下自适应Canny算子边缘检测[J]. 光学精密工程, 2022, 30(3): 350-362.
[8]  徐武, 张强, 王欣达, 等. 基于改进Canny算子的图像边缘检测方法[J]. 激光杂志, 2022, 43(4): 103-108.
[9]  付文博, 何欣, 于俊洋. C-Canny算法和改进单层神经网络相结合的面部特征点定位[J]. 计算机工程与科学, 2020, 42(4): 658-664.
[10]  张晨阳, 曹艳华, 杨晓忠. 一种基于改进Canny算法的图像边缘检测新方法[J]. 计算机仿真, 2023, 40(7): 382-386.
[11]  Yu, X., Wang, Z., Wang, Y. and Zhang, C. (2021) Edge Detection of Agricultural Products Based on Morphologically Improved Canny Algorithm. Mathematical Problems in Engineering, 2021, Article ID: 6664970.
https://doi.org/10.1155/2021/6664970
[12]  张宝, 童文超, 姜建伟, 等. 改进自适应双边滤波Canny算子在自动化设备中的应用[J]. 河南工程学院学报(自然科学版), 2024, 36(1): 76-80.
[13]  Zhu, X., Tang, M., Zhang, K. and Wang, Q. (2021) Image Detection Method Based on Improved Canny Algorithm. 2021 40th Chinese Control Conference (CCC), Shanghai, 26-28 July 2021, 7033-7039.
https://doi.org/10.23919/ccc52363.2021.9549565
[14]  孙海明, 韩国强. 基于改进Canny算法的噪声图像边缘检测[J]. 湖北汽车工业学院学报, 2023, 37(4): 54-57, 63.
[15]  杜绪伟, 陈东, 马兆昆, 等. 基于Canny算子的改进图像边缘检测算法[J]. 计算机与数字工程, 2022, 50(2): 410-413.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133