|
气候变暖背景下第二松花江流域干旱特征及敏感性分析
|
Abstract:
干旱是影响农业生产和水资源的重要灾害,随着气候变化的加剧,发生干旱的频率和强度也有所增加,对生态环境和社会经济造成了严重的影响。本文以第二松花江流域为研究区域,利用SMAPI指数,分析了流域的干旱特征及其对气候变化的敏感性。主要结论如下:1) VIC模型能够较好地模拟流域流量,验证了模型的适用性。2) SMAPI作为干旱指标,能够反映流域实际干旱的发生和特征,能够较好地重现历史干旱情形。3) 流域历史干旱事件的特征随时间变化在空间格局上有不同程度的变化,且随着干旱面积的增加,干旱强度总体呈增加趋势。4) 干旱历时、干旱强度、干旱面积随降水增加而减少,而干旱场次则在?30%~0%之间随降水增加而增加。本文的研究结果对于深入认识气候变化背景下第二松花江流域历史旱情的演变特征和增强流域抗旱能力具有一定的实用价值。
Drought is an important hazard affecting agricultural production and water resources. With the intensification of climate change, the frequency and intensity of drought have increased, causing serious impacts on the ecological environment and socio-economy. In this paper, the drought characteristics of the basin and its sensitivity to climate change were analysed using the SMAPI index with the Second Songhua River Basin as the study area. The main conclusions are as follows: 1) The VIC model can better simulate the flow of the basin, which verifies the applicability of the model. 2) SMAPI as a drought index can reflect the occurrence and characteristics of actual drought in the basin, and can better reproduce the ephemeral drought situation. 3) The characteristics of historical drought events in the basin changed with time to varying degrees in the spatial pattern, and the overall drought intensity showed an increasing trend with the increase of drought area. 4) The drought duration, drought intensity and drought area decreased with the increase of precipitation, while the drought frequency increased with the increase of precipitation between ?30% and 0%. The results of this paper are of practical value in understanding the evolutionary characteristics of historical drought in the Second Songhua River Basin in climate change context and in enhancing the drought resilience of the basin.
[1] | DU, C., CHEN, J., NIE, T., et al. Spatial-temporal changes in meteorological and agricultural droughts in Northeast China: Change patterns, response relationships and causes. Natural Hazards, 2022, 110(1): 155-173. https://doi.org/10.1007/s11069-021-04940-1 |
[2] | SUN, H., XU, Q., WANG, Y., et al. Agricultural drought dynamics in China during 1982-2020: A depiction with satellite remotely sensed soil moisture. GIScience and Remote Sensing, 2023, 60(1): 2257469. https://doi.org/10.1080/15481603.2023.2257469 |
[3] | 胡实, 莫兴国, 林忠辉. 未来气候情景下我国北方地区干旱时空变化趋势[J]. 干旱区地理, 2015, 38(2): 239-248. |
[4] | 马鹏里, 韩兰英, 张旭东, 等. 气候变暖背景下中国干旱变化的区域特征[J]. 中国沙漠, 2019, 39(6): 209-215. |
[5] | 马建勇, 许吟隆. 东北地区作物生长季干旱时空分布特征及其环流背景[J]. 中国农业气象, 2013, 34(1): 81-87. |
[6] | 王岩, 王敬宜, 冯锐, 等. 基于FY-3D/MERSI数据的东北地区干旱监测方法研究[J]. 干旱地区农业研究, 2023, 41(4): 289-297. |
[7] | 杨晓静, 孙洪泉, 吕娟, 等. 东北三省典型气象灾害对粮食生产影响特征研究[J]. 中国水利水电科学研究院学报, 2020, 18(1): 21-30. |
[8] | LLOYD, H. B. The impracticality of a universal drought definition. Theoretical and Applied Climatology, 2014, 117(3): 607-611. https://doi.org/10.1007/s00704-013-1025-7 |
[9] | WU, Z. Y., LU, G. H., WEN, L., et al. Reconstructing and analyzing China’s fifty-nine year (1951-2009) drought history using hydrological model simulation. Hydrology and Earth System Sciences, 2011, 15(9): 2881-2894. https://doi.org/10.5194/hess-15-2881-2011 |
[10] | 吴志勇, 徐征光, 肖恒, 等. 基于模拟土壤含水量的长江上游干旱事件时空特征分析[J]. 长江流域资源与环境, 2018, 27(1): 176-184. |
[11] | MENG, L., QUIRING, S. M. A comparison of soil moisture models using soil climate analysis network observations. Journal of Hydrometeorology, 2008, 9(4): 641-659. https://doi.org/10.1175/2008jhm916.1 |
[12] | ANDREADIS, K. M., CLARK, E. A., Wood, A. W., et al. Twentieth-century drought in the conterminous United States. Journal of Hydrometeorology, 2005, 6(6): 985-1001. https://doi.org/10.1175/jhm450.1 |
[13] | WU, Z., LU, G., WEN, L., et al. Thirty‐five year (1971-2005) simulation of daily soil moisture using the variable infiltration capacity model over China. Atmosphere-Ocean, 2007, 45(1): 37-45. https://doi.org/10.3137/ao.v450103 |
[14] | LU, G., WU, H., XIAO, H., et al. Impact of climate change on drought in the upstream Yangtze River region. Water, 2016, 8(12): 576. https://doi.org/10.3390/w8120576 |
[15] | MA, Y., GUGA, S., XU, J., et al. Assessment of maize drought risk in midwestern Jilin province: A comparative analysis of TOPSIS and VIKOR models. Remote Sensing, 2022, 14(10): 2399. https://doi.org/10.3390/rs14102399 |
[16] | WANG, R., ZHANG, J., WANG, C., et al. Characteristic analysis of droughts and waterlogging events for maize based on a new comprehensive index through coupling of multisource data in midwestern Jilin province, China. Remote Sensing, 2020, 12(1): 60. https://doi.org/10.3390/rs12010060 |
[17] | GUO, Y., WANG, R., TONG, Z., et al. Dynamic evaluation and regionalization of maize drought vulnerability in the midwest of Jilin province. Sustainability, 2019, 11(15): 4234. https://doi.org/10.3390/su11154234 |
[18] | 张晨琛, 孔庆伟, 朱锋. 基于SPEI及连续小波变换的吉林省干旱周期性特征分析[J]. 气象灾害防御, 2017, 24(3): 43-48. |