全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

甘肃省白龙江引调水工程受水区渭河与泾河流域年径流量演变情势
Evolution of Annual Runoff in the Wei and Jing River Watersheds in the Water-Receiving Areas of the Bailong River Water Diversion Project in Gansu Province

DOI: 10.12677/jwrr.2025.142015, PP. 137-149

Keywords: CWatM模型,突变分析,趋势分析,周期分析,未来气候情景,引调水工程
CWatM Model
, Mutation Analysis, Trend Analysis, Periodic Analysis, Future Climate Scenarios, Water Diversion Project

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着人口增长和经济发展,干旱半干旱地区水资源供需矛盾日益突出,跨流域引调水工程被认为是解决这一问题最有效的解决手段之一,而引调水工程受水区的年径流量演变情势对规划引调水工程的规模与调度起着十分重要的作用。本研究以甘肃省白龙江引调水工程受水区为研究对象,利用CWatM模型模拟年径流量,结合1961~2020年实测年径流数据和未来SSP370气候情景,分析了研究区域内北道与杨家坪两个径流控制站的年径流包括突变点、演变趋势及其周期性在内的演化情势。研究结果表明:1) CWatM模型在模拟受水区所在流域的月尺度径流方面表现良好,率定期与验证期结果均可满足精度要求;2) 通过实测数据分析,表明北道与杨家坪站的年径流量在1992年和1985年分别发生突变,突变后径流量显著减少,通过趋势分析发现北道与杨家坪站年径流量突变前均呈现显著下降趋势,而突变后北道站呈显著上升趋势,杨家坪站逐渐趋于稳定,尽管该区域降水量有所增加,但蒸发量和耗水量的上升幅度更大,必导致水资源供需矛盾进一步加剧。周期性分析发现年径流量在短周期(2~8年)内存在波动,主周期为5年,无明显长周期;3) 在未来SSP370情景下,考虑人类取用水影响后,两站点年径流量均呈下降趋势,北道与杨家坪站的多年平均径流量分别减少19.9%和46.0%,因此,人类取用水显著影响径流总量与变化趋势,尤其是杨家坪站所在的泾河流域,亟需通过外流域调水缓解当地水资源压力。
With population growth and economic development, the contradiction between water supply and demand in arid and semi-arid regions has become increasingly prominent. Inter-basin water diversion projects are considered to be one of the most effective solutions to this contradiction. The evolution of annual runoff in the receiving area of water diversion projects plays a crucial role in planning the scale and regulation of such projects. This study focuses on the evolution of annual runoff in the watersheds of the water-receiving areas of the Bailong River Water Diversion Project. Taken the receiving area of the Bailong River Water Diversion Project in Gansu Province as a case study, the measured annual runoff data from 1961~2020 was used to calibrate and verify the CWatM model. And the results by SSP370 future climate scenarios are from the CWatM model. Beidao and Yangjiaping are located in the Wei and Jing river watersheds, respectively. And the abrupt change points, evolution trends, and periodicity of the annual runoff are identified in these two stations. The results indicate that: 1) The CWatM demonstrates satisfactory performance in simulating monthly runoff within the water-receiving area, with both calibration and validation periods meeting prescribed accuracy criteria; 2) Abrupt changes in annual runoff were found in 1992 at Beidao station and in 1985 at Yangjiaping station. There were significant downward trends of the annual runoff at both Beidao and Yangjiaping stations before the abrupt change while there was a significant upward trend at Beidao station and a stationary trend at Yangjiaping station. Although there was an increase in precipitation, there were more increases in evaporation and in water consumption. The contradiction between water supply and

References

[1]  Intergovernmental Panel on Climate Change (IPCC). Climate change 2021—The physical science basis: Working group I contribution to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2023.
https://doi.org/10.1017/9781009157896
[2]  VÖRÖSMARTY, C. J., GREEN, P., SALISBURY, J. and LAMMERS, R. B. Global Water resources: Vulnerability from climate Change and population growth. Science, 2000, 289: 284-288.
https://doi.org/10.1126/science.289.5477.284
[3]  YI, S., KONDOLF, G. M. Environmental planning and the evolution of inter-basin water transfers in the United States. Frontiers in Environmental Science, 2024, 12: 1489917.
https://doi.org/10.3389/fenvs.2024.1489917
[4]  ROLLASON, E., SINHA, P. and BRACKEN, L. J. Interbasin water transfer in a changing world: A new conceptual model. Progress in Physical Geography: Earth and Environment, 2021, 46(3): 371-397.
https://doi.org/10.1177/03091333211065004
[5]  WU, L., SU, X. and ZHANG, T. Challenges of typical inter-basin water transfer projects in China: Anticipated impacts of climate change on streamflow and hydrological drought under CMIP6. Journal of Hydrology, 2023, 627: 130437.
https://doi.org/10.1016/j.jhydrol.2023.130437
[6]  杨桂莲, 郝芳华, 刘昌明, 等. 基于SWAT模型的基流估算及评价——以洛河流域为例[J]. 地理科学进展, 2003(5): 463-471.
[7]  杜智毅, 何素飞, 陈歆怡, 等. “双碳”和“高碳”情景下金沙江中上游流域未来径流模拟[J]. 水资源与水工程学报, 2024, 35(3): 111-119.
[8]  SHAO, M., FERNANDO, N., ZHU, J., ZHAO, G., KAO, S., ZHAO, B., et al. Estimating future surface water availability through an integrated climate-hydrology-management modeling framework at a basin scale under CMIP6 scenarios. Water Resources Research, 2023, 59(7): e2022WR034099.
https://doi.org/10.1029/2022wr034099
[9]  WANG, J., CUI, C., JIA, Z., LIU, M., PANG, S. and ZHAI, K. Analysis of the responses of surface water resources to climate change in arid and semi-arid area. Agricultural Water Management, 2024, 295: 108751.
https://doi.org/10.1016/j.agwat.2024.108751
[10]  黄草, 姜万, 冯迪子, 等. 1988-2018年洞庭湖北部地区地表水资源量演变分析[J]. 水资源与水工程学报, 2021, 32(3): 37-43.
[11]  汪清旭. 青海省近61年来地表水资源现状及演变趋势分析[J]. 水利规划与设计, 2020(3): 67-70, 170.
[12]  崔东文. 多隐层BP神经网络模型在径流预测中的应用[J]. 水文, 2013, 33(1): 68-73.
[13]  BUREK, P., SATOH, Y., KAHIL, T., TANG, T., GREVE, P., SMILOVIC, M., et al. Development of the community water model (CWatM v1.04)—A high-resolution hydrological model for global and regional assessment of integrated water resources management. Geoscientific Model Development, 2020, 13(7): 3267-3298.
https://doi.org/10.5194/gmd-13-3267-2020
[14]  WADA, Y., FLÖRKE, M., HANASAKI, N., EISNER, S., FISCHER, G., TRAMBEREND, S., et al. Modeling global water use for the 21st century: The water futures and solutions (WFaS) initiative and its approaches. Geoscientific Model Development, 2016, 9(1): 175-222.
https://doi.org/10.5194/gmd-9-175-2016
[15]  WADA, Y., WISSER, D. and BIERKENS, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth System Dynamics, 2014, 5(1): 15-40.
https://doi.org/10.5194/esd-5-15-2014
[16]  MORIASI, D. N., ARNOLD, J. G., VAN LIEW, M. W., et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 2007, 50(3): 885-900.
https://doi.org/10.13031/2013.23153
[17]  PETTITT, A. N. A non-parametric approach to the change-point problem. Applied Statistics, 1979, 28(2): 126-135.
https://doi.org/10.2307/2346729
[18]  Mann, H. B. Nonparametric tests against trend. Econometrica, 1945, 13(3): 245-259.
https://doi.org/10.2307/1907187
[19]  HUDGINS, L., FRIEHE, C. A. and MAYER, M. E. Wavelet transforms and atmopsheric turbulence. Physical Review Letters, 1993, 71(20): 3279-3282.
https://doi.org/10.1103/physrevlett.71.3279

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133