|
植被冠层导度参数化改进对SWAT模型蒸散发及径流模拟的影响
|
Abstract:
高寒地区(如青藏高原地区)水循环过程复杂,蒸散发是决定水资源平衡的关键环节,但传统SWAT (Soil and Water Assessment Tool)模型在蒸散发模拟过程中,受植被冠层导度参数化精度限制,导致水循环过程模拟存在较大不确定性,影响流域水资源评估与管理的可靠性。针对该问题,本研究耦合冠层导度模型——Irmak模型至SWAT模型,构建改进的SWAT-I模型,并在拉萨河流域开展模拟及验证。结果表明:1) SWAT-I模型显著提升了水文过程模拟性能,率定期与验证期的径流Nash-Sutcliffe效率系数较传统SWAT模型分别提高8.11%和4.23%;2) SWAT-I模型中Irmak模型的冠层导度的多因子协同参数化方案改善了蒸散发的模拟,R2提升57.14%,PBIAS改善28.71%;3) SWAT-I模型表明拉萨河流域蒸散发表现出明显的空间异质性,2000~2017年间年均蒸散发量以9.94 mm/a的速率显著上升,其中下游低海拔地区蒸散发量显著高于上游高海拔地区;4) 降水–水文要素关系呈现海拔梯度特征:流域上游受冰川融雪影响,降水与流域径流的相关性较弱(相关系数约为0.50),而中下游降水主导区相关系数达0.70以上,符合水源分割理论。本研究提出的耦合Irmak冠层导度模型的SWAT-I模型可有效提升流域蒸散发、径流等水循环过程的模拟精度,为气候变化下拉萨河流域水资源精准管理提供了模型支撑。
In alpine regions such as the Qinghai-Xizang Plateau, the water cycle is highly dynamic and complex, with evapotranspiration playing a pivotal role in regulating regional water availability. However, the traditional SWAT (Soil and Water Assessment Tool) model is constrained by the limited parameterization accuracy of vegetation canopy conductance, introducing significant uncertainty into water cycle simulations and undermining the reliability of water resource assessments and management. To address this limitation, this paper integrated the Irmak canopy conductance model into SWAT model, developing a modified SWAT-I model, which was applied and validated in the Lhasa River Basin. The results demonstrate that: 1) SWAT-I model significantly enhances hydrological process simulations, with Nash-Sutcliffe efficiency coefficients for runoff improving by 8.11% and 4.23% during the calibration and validation periods, respectively, compared to the original SWAT model; 2) The multi-factor parameterization scheme of canopy conductance in SWAT-I improves ET simulations, increasing R2 by 57.14% and reducing PBIAS by 28.71%; 3) SWAT-I model reveals strong spatial heterogeneity in ET, with annual ET increasing at a rate of 9.94 mm/a from 2000 to 2017, and ET in the downstream low-elevation areas significantly exceeding that in upstream high-elevation regions; 4) The relationship between precipitation and runoff shows an altitudinal gradient, with weak correlation in the glacier-fed upper reaches (correlation coefficient is about 0.50), while in the precipitation-dominated middle and lower reaches, the correlation exceeds 0.70, consistent with water source partitioning theory. These findings demonstrate that the SWAT-I
[1] | GOOD, S. P., NOONE, D. and BOWEN, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 2015, 349(6244): 175-177. https://doi.org/10.1126/science.aaa5931 |
[2] | 郭珈源, 孙旭杨, 刘金涛, 等. 基于Budyko理论的高寒山区流域径流演变归因分析[J]. 河海大学学报(自然科学版), 2025, 53(3): 22-29. |
[3] | WU, R., JIA, J., YAN, W., HU, L., WANG, Y. and CHEN, Y. Characteristics of canopy conductance and environmental driving mechanism in three monsoon climate regions of China. Frontiers in Environmental Science, 2022, 10: 935926. https://doi.org/10.3389/fenvs.2022.935926 |
[4] | 张玮睿, 胡琦, 和骅芸, 等. 不同时间尺度中国大陆区域辐射资源时空变化特征分析[J]. 中国农业资源与区划, 2024, 45(10): 97-108. |
[5] | 尹红, 孙颖, 王东阡. 人类活动对青藏高原最暖夏季极端温度的影响[J]. 冰川冻土, 2024, 46(6): 1780-1789. |
[6] | WEN, N., HAN, Y., QI, J., MAREK, G. W., SUN, D., FENG, P., et al. Improving hydrological modeling to close the gap between elevated CO2 concentration and crop response: Implications for water resources. Water Research, 2024, 265: 122279. https://doi.org/10.1016/j.watres.2024.122279 |
[7] | BUTCHER, J. B., JOHNSON, T. E., NOVER, D. and SARKAR, S. Incorporating the effects of increased atmospheric CO2 in watershed model projections of climate change impacts. Journal of Hydrology, 2014, 513: 322-334. https://doi.org/10.1016/j.jhydrol.2014.03.073 |
[8] | 罗紫东, 关华德, 章新平, 等. 桂花树冠层气孔导度模型的优化及其参数分析[J]. 生态学报, 2016, 36(13): 3995-4005. |
[9] | 张振, 辛晓洲, 裔传祥, 等. 考虑植被类型的冠层气孔导度模型[J]. 农业工程学报, 2021, 37(3): 164-172. |
[10] | 赵华, 申双和, 华荣强, 等. Penman-Monteith模型中水稻冠层阻力的模拟[J]. 中国农业气象, 2015, 36(1): 17-23. |
[11] | IRMAK, S., MUTIIBWA, D. On the dynamics of canopy resistance: Generalized linear estimation and relationships with primary micrometeorological variables. Water Resources Research, 2010, 46(8): W08526. https://doi.org/10.1029/2009wr008484 |
[12] | MASSMAN, W. J. A Surface energy balance method for partitioning evapotranspiration data into plant and soil components for a surface with partial canopy cover. Water Resources Research, 1992, 28(6): 1723-1732. https://doi.org/10.1029/92wr00217 |
[13] | JARVIS, P. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1976, 273: 593. |
[14] | 黄辉, 于贵瑞, 孙晓敏, 等. 华北平原冬小麦冠层导度的环境响应及模拟[J]. 生态学报, 2007, 27(12): 5209-5221. |
[15] | LIU, M., LIN, K. and TU, X. Increasing evapotranspiration in China: Quantifying the roles of CO2 fertilization, climate and vegetation changes. Water Resources Research, 2025, 61(2): e2024WR038148. https://doi.org/10.1029/2024wr038148 |
[16] | 吴林, 刘兴冉, 闵雷雷, 等. 黑河中游绿洲区玉米冠层阻抗的环境响应及模拟[J]. 中国生态农业学报, 2017, 25(2): 247-257. |
[17] | QIAO, L., WILL, R., WAGNER, K., ZHANG, T. and ZOU, C. Improvement of evapotranspiration estimates for grasslands in the southern great plains: Comparing a biophysical model (SWAT) and remote sensing (MODIS). Journal of Hydrology: Regional Studies, 2022, 44: 101275. https://doi.org/10.1016/j.ejrh.2022.101275 |
[18] | 乔丽. 拉萨河流域主要水文生态要素对气候变化的响应[D]: [硕士学位论文]. 西安: 长安大学, 2020. |
[19] | 卢晗, 曾永年, 王盼成. 青藏高原东北部实际蒸散发时空变化特征及影响因素[J]. 干旱区地理, 2025, 48(5): 753-764. |
[20] | 徐忠宝. 基于氢氧稳定同位素技术的青藏高原典型流域径流水源解析[D]: [硕士学位论文]. 宜昌: 三峡大学, 2024. |
[21] | 谷黄河, 刘宇清, 王晓燕, 等. 基于VIC_glacier模型的拉萨河水文模拟及冰川径流研究[J]. 水文, 2024, 44(1): 90-95. |