|
Pure Mathematics 2025
NLS-KDV方程的格子Boltzmann方法
|
Abstract:
建立一维格子Boltzmann模型的演化方程,运用Taylor展开和Chapman-Enskog多尺度分析技术,推导出能够恢复一类非线性耦合的NLS-KDV方程的平衡态分布函数和修正函数。最后,数值算例验证出该方法的计算结果与给出的精确解有很好的一致性。
The evolution equations of the one-dimensional lattice Boltzmann model are established, and the equilibrium distribution function and the correction function that can recover a class of nonlinearly coupled NLS-KDV equations are derived by using Taylor expansion and Chapman-Enskog multiscale analysis techniques. Finally, numerical examples verify that the computational results of the method are in good agreement with the given exact solutions.
[1] | Shang, J., Li, W. and Li, D. (2023) Traveling Wave Solutions of a Coupled Schrödinger-Korteweg-De Vries Equation by the Generalized Coupled Trial Equation Method. Heliyon, 9, e15695. https://doi.org/10.1016/j.heliyon.2023.e15695 |
[2] | Akinyemi, L., Şenol, M., Akpan, U. and Oluwasegun, K. (2021) The Optical Soliton Solutions of Generalized Coupled Nonlinear Schrödinger-Korteweg-De Vries Equations. Optical and Quantum Electronics, 53, Article No. 394. https://doi.org/10.1007/s11082-021-03030-7 |
[3] | Akinyemi, L., Veeresha, P. and Ajibola, S.O. (2021) Numerical Simulation for Coupled Nonlinear Schrödinger-korteweg-de Vries and Maccari Systems of Equations. Modern Physics Letters B, 35, Article ID: 2150339. https://doi.org/10.1142/s0217984921503395 |
[4] | Ray, S.S. (2018) The Time-Splitting Fourier Spectral Method for Riesz Fractional Coupled Schrödinger-KdV Equations in Plasma Physics. Modern Physics Letters B, 32, Article ID: 1850341. https://doi.org/10.1142/s0217984918503414 |
[5] | Ali A. Mustafa, and Al-Hayani, W. (2023) Solving the Coupled Schrödinger-Korteweg-De-Vries System by Modified Variational Iteration Method with Genetic Algorithm. Wasit Journal of Computer and Mathematics Science, 2, 97-108. https://doi.org/10.31185/wjcm.127 |
[6] | Bai, D. and Zhang, L. (2009) The Finite Element Method for the Coupled Schrödinger-KdV Equations. Physics Letters A, 373, 2237-2244. https://doi.org/10.1016/j.physleta.2009.04.043 |
[7] | Chippada, S., Dawson, C.N., MartÍnez-Canales, M.L. and Wheeler, M.F. (1998) Finite Element Approximations to the System of Shallow Water Equations, Part II: Discrete-Time a Priori Error Estimates. SIAM Journal on Numerical Analysis, 36, 226-250. https://doi.org/10.1137/s0036142996314159 |
[8] | Golbabai, A. and Safdari-Vaighani, A. (2010) A Meshless Method for Numerical Solution of the Coupled Schrödinger-KdV Equations. Computing, 92, 225-242. https://doi.org/10.1007/s00607-010-0138-4 |
[9] | Kaya, D. and El-Sayed, S.M. (2003) On the Solution of the Coupled Schrödinger-KdV Equation by the Decomposition Method. Physics Letters A, 313, 82-88. https://doi.org/10.1016/s0375-9601(03)00723-0 |
[10] | Küçükarslan, S. (2009) Homotopy Perturbation Method for Coupled Schrödinger-KdV Equation. Nonlinear Analysis: Real World Applications, 10, 2264-2271. https://doi.org/10.1016/j.nonrwa.2008.04.008 |
[11] | Abdou, M.A. and Soliman, A.A. (2005) New Applications of Variational Iteration Method. Physica D: Nonlinear Phenomena, 211, 1-8. https://doi.org/10.1016/j.physd.2005.08.002 |
[12] | Doosthoseini, A. and Shahmohamadi, H. (2010) Variational Iteration Method for Solving Coupled Schrödinger-KdV Equation. Applied Mathematical Sciences, 4, 823-837. |
[13] | 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009: 1. |
[14] | 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2008: 10. |
[15] | 宋通政, 戴厚平, 冯舒婷, 等. 非线性耦合长短波方程的格子Boltzmann模型求解[J]. 吉首大学学报(自然科学版), 2022, 43(3): 7-14. |
[16] | 冯颖欣, 戴厚平, 汪辰, 等. 扩展Fisher-Kolmogorov方程的格子Boltzmann方法[J]. 吉首大学学报(自然科学版), 2023, 44(4): 19-30. |
[17] | Feng, Y., Dai, H. and Wei, X. (2023) Numerical Solutions to the Sharma-Tasso-Olver Equation Using Lattice Boltzmann Method. International Journal for Numerical Methods in Fluids, 95, 1546-1564. https://doi.org/10.1002/fld.5219 |
[18] | Zhang, J. and Yan, G. (2008) Lattice Boltzmann Method for One and Two-Dimensional Burgers Equation. Physica A: Statistical Mechanics and Its Applications, 387, 4771-4786. https://doi.org/10.1016/j.physa.2008.04.002 |