全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

NLS-KDV方程的格子Boltzmann方法
Lattice Boltzmann Method for the NLS-KDV Equation

DOI: 10.12677/pm.2025.155172, PP. 232-240

Keywords: NLS-KDV方程,格子Boltzmann方法,Taylor展开
NLS-KDV Equation
, Lattice Boltzmann Method, Taylor Expansion

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立一维格子Boltzmann模型的演化方程,运用Taylor展开和Chapman-Enskog多尺度分析技术,推导出能够恢复一类非线性耦合的NLS-KDV方程的平衡态分布函数和修正函数。最后,数值算例验证出该方法的计算结果与给出的精确解有很好的一致性。
The evolution equations of the one-dimensional lattice Boltzmann model are established, and the equilibrium distribution function and the correction function that can recover a class of nonlinearly coupled NLS-KDV equations are derived by using Taylor expansion and Chapman-Enskog multiscale analysis techniques. Finally, numerical examples verify that the computational results of the method are in good agreement with the given exact solutions.

References

[1]  Shang, J., Li, W. and Li, D. (2023) Traveling Wave Solutions of a Coupled Schrödinger-Korteweg-De Vries Equation by the Generalized Coupled Trial Equation Method. Heliyon, 9, e15695.
https://doi.org/10.1016/j.heliyon.2023.e15695
[2]  Akinyemi, L., Şenol, M., Akpan, U. and Oluwasegun, K. (2021) The Optical Soliton Solutions of Generalized Coupled Nonlinear Schrödinger-Korteweg-De Vries Equations. Optical and Quantum Electronics, 53, Article No. 394.
https://doi.org/10.1007/s11082-021-03030-7
[3]  Akinyemi, L., Veeresha, P. and Ajibola, S.O. (2021) Numerical Simulation for Coupled Nonlinear Schrödinger-korteweg-de Vries and Maccari Systems of Equations. Modern Physics Letters B, 35, Article ID: 2150339.
https://doi.org/10.1142/s0217984921503395
[4]  Ray, S.S. (2018) The Time-Splitting Fourier Spectral Method for Riesz Fractional Coupled Schrödinger-KdV Equations in Plasma Physics. Modern Physics Letters B, 32, Article ID: 1850341.
https://doi.org/10.1142/s0217984918503414
[5]  Ali A. Mustafa, and Al-Hayani, W. (2023) Solving the Coupled Schrödinger-Korteweg-De-Vries System by Modified Variational Iteration Method with Genetic Algorithm. Wasit Journal of Computer and Mathematics Science, 2, 97-108.
https://doi.org/10.31185/wjcm.127
[6]  Bai, D. and Zhang, L. (2009) The Finite Element Method for the Coupled Schrödinger-KdV Equations. Physics Letters A, 373, 2237-2244.
https://doi.org/10.1016/j.physleta.2009.04.043
[7]  Chippada, S., Dawson, C.N., MartÍnez-Canales, M.L. and Wheeler, M.F. (1998) Finite Element Approximations to the System of Shallow Water Equations, Part II: Discrete-Time a Priori Error Estimates. SIAM Journal on Numerical Analysis, 36, 226-250.
https://doi.org/10.1137/s0036142996314159
[8]  Golbabai, A. and Safdari-Vaighani, A. (2010) A Meshless Method for Numerical Solution of the Coupled Schrödinger-KdV Equations. Computing, 92, 225-242.
https://doi.org/10.1007/s00607-010-0138-4
[9]  Kaya, D. and El-Sayed, S.M. (2003) On the Solution of the Coupled Schrödinger-KdV Equation by the Decomposition Method. Physics Letters A, 313, 82-88.
https://doi.org/10.1016/s0375-9601(03)00723-0
[10]  Küçükarslan, S. (2009) Homotopy Perturbation Method for Coupled Schrödinger-KdV Equation. Nonlinear Analysis: Real World Applications, 10, 2264-2271.
https://doi.org/10.1016/j.nonrwa.2008.04.008
[11]  Abdou, M.A. and Soliman, A.A. (2005) New Applications of Variational Iteration Method. Physica D: Nonlinear Phenomena, 211, 1-8.
https://doi.org/10.1016/j.physd.2005.08.002
[12]  Doosthoseini, A. and Shahmohamadi, H. (2010) Variational Iteration Method for Solving Coupled Schrödinger-KdV Equation. Applied Mathematical Sciences, 4, 823-837.
[13]  何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009: 1.
[14]  郭照立, 郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京: 科学出版社, 2008: 10.
[15]  宋通政, 戴厚平, 冯舒婷, 等. 非线性耦合长短波方程的格子Boltzmann模型求解[J]. 吉首大学学报(自然科学版), 2022, 43(3): 7-14.
[16]  冯颖欣, 戴厚平, 汪辰, 等. 扩展Fisher-Kolmogorov方程的格子Boltzmann方法[J]. 吉首大学学报(自然科学版), 2023, 44(4): 19-30.
[17]  Feng, Y., Dai, H. and Wei, X. (2023) Numerical Solutions to the Sharma-Tasso-Olver Equation Using Lattice Boltzmann Method. International Journal for Numerical Methods in Fluids, 95, 1546-1564.
https://doi.org/10.1002/fld.5219
[18]  Zhang, J. and Yan, G. (2008) Lattice Boltzmann Method for One and Two-Dimensional Burgers Equation. Physica A: Statistical Mechanics and Its Applications, 387, 4771-4786.
https://doi.org/10.1016/j.physa.2008.04.002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133