全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器学习的多时间粒度需求预测研究——以某制造企业供应链管理为例
Research on Machine Learning-Based Demand Forecasting across Multiple Time Granularities—A Case Study of Supply Chain Management in a Manufacturing Enterprise

DOI: 10.12677/sa.2025.145139, PP. 213-224

Keywords: 机器学习,时间粒度,需求预测
Machine Learning
, Time Granularity, Demand Forecasting

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于国内某大型制造企业在2015年9月1日至2018年12月20日面向经销商的出货数据,探讨了在全球供应链不确定性加剧与数字化转型加速的背景下,企业需求预测面临的多源异构数据整合、非线性波动(如疫情引发的“牛鞭效应”)和跨粒度决策协同等挑战。本文通过对比XGBoost、LightGBM和随机森林(RF)模型在月、周、日三种时间粒度下的预测性能。研究发现,模型精度随预测频率提高呈系统性衰减,并由此提出构建多粒度联合优化框架的必要性,以实现不同决策层级的精度与资源分配平衡。
Based on the shipment data of a large domestic manufacturing enterprise to distributors from September 1, 2015 to December 20, 2018, this article explores the context of intensified global supply chain uncertainties and accelerated digital transformation. Enterprise demand forecasting faces challenges such as the integration of multi-source heterogeneous data, nonlinear fluctuations (such as the “bullwhip effect” triggered by the epidemic), and cross-granularity decision-making collaboration. This paper compares the prediction performance of XGBoost, LightGBM and Random Forest (RF) models at three time granularities: month, week and day. The research finds that the model accuracy systematically decays with the increase of the prediction frequency. Based on this, the necessity of constructing a multi-granularity joint optimization framework is proposed to achieve the balance of accuracy and resource allocation at different decision-making levels.

References

[1]  贾建鸿, 叶春明. 数字化转型对物流企业供应链管理的影响[J]. 物流科技, 2022, 45(18): 105-109.
[2]  Bhattacharya, R. and Bandyopadhyay, S. (2010) A Review of the Causes of Bullwhip Effect in a Supply Chain. The International Journal of Advanced Manufacturing Technology, 54, 1245-1261.
https://doi.org/10.1007/s00170-010-2987-6
[3]  Djonguet, T.K.M. and Nkiet, G.M. (2025) Asymptotic Normality for Kernel-Based Test of Conditional Mean Independence in Hilbert Space. Mathematica Slovaca, 75, 215-224.
https://doi.org/10.1515/ms-2025-0017
[4]  Kapsalyamova, Z., Juatova, S., Azhgaliyeva, D. and Ouarda, T.B.M.J. (2025) Measuring Energy Poverty by Estimating the Income Elasticity of Energy Demand: An Application to Kazakhstan. Utilities Policy, 95, Article ID: 101901.
https://doi.org/10.1016/j.jup.2025.101901
[5]  Nar, M. (2021) The Relationship Between Income Inequality and Energy Consumption: A Pareto Optimal Approach. The Journal of Asian Finance, Economics and Business (JAFEB), 8, 613-624.
[6]  李佳楠, 金晓彤, 赵太阳, 等. 体验与实物商品价值评估中消费者价格线索敏感性的非对称效应[J]. 南开管理评论, 2024, 27(8): 135-147.
[7]  Alkiayat, M. (2021) A Practical Guide to Creating a Pareto Chart as a Quality Improvement Tool. Global Journal on Quality and Safety in Healthcare, 4, 83-84.
https://doi.org/10.36401/jqsh-21-x1
[8]  Sun, F., Qu, Z., Wu, B. and Bold, S. (2024) Enhancing Global Supply Chain Distribution Resilience through Digitalization: Insights from Natural Resource Sector of China. Resources Policy, 95, Article ID: 105169.
https://doi.org/10.1016/j.resourpol.2024.105169
[9]  Zhang, C. and Ma, Y.Q. (2012) Ensemble Machine Learning. Springer.
https://doi.org/10.1007/978-1-4419-9326-7
[10]  Sun, R., Huang, W., Dong, Y., Zhao, L., Zhang, B., Ma, H., et al. (2022) Dynamic Forecast of Desert Locust Presence Using Machine Learning with a Multivariate Time Lag Sliding Window Technique. Remote Sensing, 14, Article 747.
https://doi.org/10.3390/rs14030747
[11]  Pritam, P.D. and Joyce, W. (2024) XGBoost for Regression Predictive Modeling and Time Series Analysis: Learn How to Build, Evaluate, and Deploy Predictive Models with Expert Guidance. Packt Publishing Limited.
[12]  Sadig, H.E., Kamal, M., Rehman, M.u., Habadi, M.I., Alnagar, D.K., Yusuf, M., et al. (2025) Advanced Time Complexity Analysis for Real-Time COVID-19 Prediction in Saudi Arabia Using LightGBM and XGBoost. Journal of Radiation Research and Applied Sciences, 18, Article ID: 101364.
https://doi.org/10.1016/j.jrras.2025.101364
[13]  Zhang, Y., Wu, X., Tian, Z., Gao, W., Peng, H. and Yang, K. (2023) Comparison of Random Forest, Support Vector Regression, and Long Short Term Memory for Performance Prediction and Optimization of a Cryogenic Organic Rankine Cycle (ORC). Energy, 280, Article ID: 128146.
https://doi.org/10.1016/j.energy.2023.128146
[14]  Kammoun, M.A., Hajej, Z., Bennour, S., Salem, N., Mabrouk, O.E. and Baccar, A. (2025) Deep Learning Framework for Multi-Demand Forecasting and Joint Prediction of Production, Distribution, and Maintenance across Multiple Manufacturing Sites. The International Journal of Advanced Manufacturing Technology, 136, 2349-2376.
https://doi.org/10.1007/s00170-024-14916-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133