全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

V2I通信中基于STAR-RIS辅助RSMA的HARQ性能分析
Analysis of HARQ Performance Based on STAR-RIS Assisted RSMA in V2I Communication

DOI: 10.12677/aam.2025.145288, PP. 625-636

Keywords: STAR-RIS,速率分割多址接入,混合自动重传,车辆与基站通信
STAR-RIS
, Rate Splitting Multiple Access (RSMA), Hybrid Automatic Repeat reQuest (HARQ), Vehicle-to-Base Station Communication

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决车辆与基站之间通信链路受阻和通信可靠性问题,本文研究同时传输和反射可重构智能表面(Simultaneous Transmitting and Reflecting Reconfigurable Intelligent Surfaces, STAR-RIS)辅助的车辆通信,考虑速率分割多址接入(Rate-Splitting Multiple Access, RSMA),并结合混合自动重传(Hybrid Automatic Repeat reQuest, HARQ)技术,分析系统性能。通过信道近似分布推导HARQ传输协议下车辆用户的中断概率,根据中断概率表达式进一步分析吞吐量和能量效率,推导出吞吐量和能量效率的闭式表达式。最后,借助MATLAB平台进行数值模拟,验证了理论分析的正确性。结果表明,通过对比不同STAR-RIS元件个数、基站发射功率和HARQ最大重传次数下的系统性能,发现采用HARQ的系统性能优于不采用HARQ的系统,且分配更多功率的车辆用户性能更优。
To solve the problems of communication link obstruction and communication reliability between vehicles and base stations, this paper studies vehicle communication assisted by Simultaneous Transmitting and Reflecting Reconfigurable Intelligent Surfaces (STAR-RIS), considers Rate Splitting Multiple Access (RSMA) and combines Hybrid Automatic Repeat reQuest (HARQ) technology to analyze system performance. The outage probability of vehicle users under the HARQ transmission protocol is deduced from channel approximation distribution, throughput and energy efficiency are further analyzed based on the outage probability expression, and closed-form expressions for throughput and energy efficiency are derived. Finally, numerical simulations are conducted using the MATLAB platform to verify the correctness of the theoretical analysis. The results show that by comparing the system performance under different numbers of STAR-RIS elements, base station transmission power, and maximum HARQ retransmission times, it is found that the system performance using HARQ is better than that without HARQ, and the performance of vehicle users who allocate more power is better.

References

[1]  Datta, S.K., Da Costa, R.P.F., Harri, J. and Bonnet, C. (2016) Integrating Connected Vehicles in Internet of Things Ecosystems: Challenges and Solutions. 2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Coimbra, 21-24 June 2016, 1-6.
https://doi.org/10.1109/wowmom.2016.7523574
[2]  Datta, S.K., Haerri, J., Bonnet, C. and Ferreira Da Costa, R. (2017) Vehicles as Connected Resources: Opportunities and Challenges for the Future. IEEE Vehicular Technology Magazine, 12, 26-35.
https://doi.org/10.1109/mvt.2017.2670859
[3]  Basar, E., Di Renzo, M., De Rosny, J., Debbah, M., Alouini, M. and Zhang, R. (2019) Wireless Communications through Reconfigurable Intelligent Surfaces. IEEE Access, 7, 116753-116773.
https://doi.org/10.1109/access.2019.2935192
[4]  Zou, X., Yao, J., Chung, K.L., Lai, G., Zeng, W. and Gu, W. (2022) A Comparative Study between Reconfigurable Intelligent Surface and Reflectarray Antenna. 2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT), Hefei, 21-23 August 2022, 846-848.
https://doi.org/10.1109/iceict55736.2022.9909101
[5]  Xu, J., Liu, Y., Mu, X. and Dobre, O.A. (2021) STAR-RISs: Simultaneous Transmitting and Reflecting Reconfigurable Intelligent Surfaces. IEEE Communications Letters, 25, 3134-3138.
https://doi.org/10.1109/lcomm.2021.3082214
[6]  Yadav, S. and Rishi, R. (2024) Deep Reinforcement Learning Based Energy-Efficient Design for STAR-IRS Assisted V2V Users. Recent Trends in Image Processing and Pattern Recognition, Derby, 7-8 December 2023, 130-143.
https://doi.org/10.1007/978-3-031-53082-1_11
[7]  Zhou, G., Mao, Y. and Clerckx, B. (2022) Rate-Splitting Multiple Access for Multi-Antenna Downlink Communication Systems: Spectral and Energy Efficiency Tradeoff. IEEE Transactions on Wireless Communications, 21, 4816-4828.
https://doi.org/10.1109/twc.2021.3133433
[8]  Mishra, A., Mao, Y., Dizdar, O. and Clerckx, B. (2022) Rate-Splitting Multiple Access for Downlink Multiuser MIMO: Precoder Optimization and PHY-Layer Design. IEEE Transactions on Communications, 70, 874-890.
https://doi.org/10.1109/tcomm.2021.3138437
[9]  Clerckx, B., Mao, Y., Jorswieck, E.A., Yuan, J., Love, D.J., Erkip, E., et al. (2023) A Primer on Rate-Splitting Multiple Access: Tutorial, Myths, and Frequently Asked Questions. IEEE Journal on Selected Areas in Communications, 41, 1265-1308.
https://doi.org/10.1109/jsac.2023.3242718
[10]  Karim, F., Singh, S.K., Singh, K., Prakriya, S. and Li, C. (2023) Performance Analysis for RSMA-Empowered STAR-RIS-Aided Downlink Communications. 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Toronto, 5-8 September 2023, 1-6.
https://doi.org/10.1109/pimrc56721.2023.10293803
[11]  Xiao, F., Chen, P., Xu, S., Pang, X. and Liu, H. (2023) Physical Layer Security of STAR-RIS-Aided RSMA Systems. Physical Communication, 61, Article ID: 102192.
https://doi.org/10.1016/j.phycom.2023.102192
[12]  Sheng, X. (2024) Effective Capacity of STAR-RIS Assisted RSMA Network with Imperfect SIC. Physical Communication, 66, Article ID: 102449.
https://doi.org/10.1016/j.phycom.2024.102449
[13]  Fan, X., Duan, W. and Choi, J. (2024) RSMA-Aided V2X Communications: A Multi-Layer Perspective. Physical Communication, 65, Article ID: 102392.
https://doi.org/10.1016/j.phycom.2024.102392
[14]  Shi, Z., Tsiftsis, T.A., Tan, W., Yang, G., Ma, S. and Alouini, M. (2019) Effective Capacity for Renewal Service Processes with Applications to HARQ Systems. IEEE Transactions on Communications, 67, 6556-6571.
https://doi.org/10.1109/tcomm.2019.2921768
[15]  Wang, H., Shi, Z., Fu, Y. and Song, R. (2021) Outage Performance for Noma-Aided Small Cell Networks with HARQ. IEEE Wireless Communications Letters, 10, 72-76.
https://doi.org/10.1109/lwc.2020.3020938
[16]  Abidrabbu, S., Ali, S.R. and Arslan, H. (2024) A Novel HARQ Design for RSMA Networks. IEEE Internet of Things Journal, 11, 11907-11918.
https://doi.org/10.1109/jiot.2023.3332096
[17]  Zheng, Y., Tang, J., Zheng, B., Davydov, M. and Wong, K. (2024) In-Depth Analysis of HARQ Performance in Active RIS-Assisted RSMA Systems. IEEE Wireless Communications Letters, 13, 3074-3078.
https://doi.org/10.1109/lwc.2024.3445503
[18]  Liu, Y., Mu, X., Xu, J., Schober, R., Hao, Y., Poor, H.V., et al. (2021) STAR: Simultaneous Transmission and Reflection for 360˚ Coverage by Intelligent Surfaces. IEEE Wireless Communications, 28, 102-109.
https://doi.org/10.1109/mwc.001.2100191
[19]  Xie, Z., Yi, W., Wu, X., Liu, Y. and Nallanathan, A. (2022) STAR-RIS Aided NOMA in Multicell Networks: A General Analytical Framework with Gamma Distributed Channel Modeling. IEEE Transactions on Communications, 70, 5629-5644.
https://doi.org/10.1109/tcomm.2022.3186409
[20]  Vu, T., Pham, Q. and Kim, S. (2024) On Performance of Downlink THz-Based Rate-Splitting Multiple-Access (RSMA): Is It Always Better than NOMA? IEEE Transactions on Vehicular Technology, 73, 4435-4440.
https://doi.org/10.1109/tvt.2023.3325244
[21]  Choi, J., Park, J. and Lee, N. (2022) Energy Efficiency Maximization Precoding for Quantized Massive MIMO Systems. IEEE Transactions on Wireless Communications, 21, 6803-6817.
https://doi.org/10.1109/twc.2022.3152491
[22]  Niu, H., Lin, Z., An, K., Wang, J., Zheng, G., Al-Dhahir, N., et al. (2023) Active RIS Assisted Rate-Splitting Multiple Access Network: Spectral and Energy Efficiency Tradeoff. IEEE Journal on Selected Areas in Communications, 41, 1452-1467.
https://doi.org/10.1109/jsac.2023.3240718

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133