全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高精度积分值型MQ拟插值
High-Precision Integral-Value-Based MQ Quasi-Interpolation

DOI: 10.12677/aam.2025.145281, PP. 540-553

Keywords: 拟插值,Multiquadric (MQ)函数,积分值,误差估计
Quasi-Interpolation
, Multiquadric (MQ) Function, Integral Value, Error Estimation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文针对积分值条件下的拟插值问题,提出了一种基于Multiquadric (MQ)函数的新型高精度数值逼近方法。作为一类条件正定径向基函数,MQ函数凭借其指数级收敛特性在拟插值理论中具有重要的应用价值。现有的MQ拟插值方法主要基于函数值,在实际应用中,函数信息经常以连续区间上的积分值形式呈现,本文重点解决仅知积分值条件下的构造问题。具体地,首先基于积分值的线性组合实现对节点处函数值及二阶导数值的逼近,进而结合利用函数值与二阶导数信息的拟插值方法,构造出新型的高精度积分值型MQ拟插值算子并推导了相应的误差估计表达式。数值实验结果表明,该方法有较好的逼近效果且其数值收敛阶与理论分析是吻合的,验证了所提算法的有效性。
This paper proposes a novel high-precision numerical approximation method for quasi-interpolation problems under integral value conditions, utilizing Multiquadric (MQ) functions. As a class of conditionally positive definite radial basis functions, MQ functions hold significant application value in quasi-interpolation theory due to their exponential convergence properties. Existing MQ quasi-interpolation methods primarily rely on function values; however, in practical scenarios, functional information is often presented in the form of integral values over continuous intervals. This work focuses on addressing the construction of quasi-interpolation operators under the condition of known integral values. Specifically, we first approximate the function values and second-order derivative values at nodes through linear combinations of integral values. Subsequently, by integrating a quasi-interpolation framework that incorporates both function values and second-order derivative information, a novel high-precision integral-value-based MQ quasi-interpolation operator is constructed, accompanied by derived error estimation formulas. Numerical experiments demonstrate the favorable approximation performance of the proposed method, with the numerical convergence order aligning well with theoretical analyses, thereby validating the effectiveness of the algorithm.

References

[1]  Powell, M.J.D. (1990) Univariate Multiquadric Approximation: Reproduction of Linear Polynomials. In: International Series of Numerical Mathematics/Série Internationale dAnalyse Numérique, Birkhäuser Basel, 227-240.
https://doi.org/10.1007/978-3-0348-5685-0_17
[2]  Beatson, R.K. and Powell, M.J.D. (1992) Univariate Multiquadric Approximation: Quasi-Interpolation to Scattered Data. Constructive Approximation, 8, 275-288.
https://doi.org/10.1007/bf01279020
[3]  Wu, Z. and Robert, S. (1994) Shape Preserving Properties and Convergence of Univariate Multiquadric Quasi-Interpolation. Acta Mathematicae Applicatae Sinica, 10, 441-446.
https://doi.org/10.1007/bf02016334
[4]  Ling, L. (2005) Multivariate Quasi-Interpolation Schemes for Dimension-Splitting Multiquadric. Applied Mathematics and Computation, 161, 195-209.
https://doi.org/10.1016/j.amc.2003.12.022
[5]  姜自武. 样条函数与径向基函数的若干研究[D]: [博士学位论文]. 大连: 大连理工大学, 2010.
[6]  高文武. 基于导数信息的Multiquadric拟插值[J]. 复旦学报, 2016, 55(3): 298-303.
[7]  Behforooz, H. (2006) Approximation by Integro Cubic Splines. Applied Mathematics and Computation, 175, 8-15.
https://doi.org/10.1016/j.amc.2005.07.066
[8]  Lang, F. and Xu, X. (2012) On Integro Quartic Spline Interpolation. Journal of Computational and Applied Mathematics, 236, 4214-4226.
https://doi.org/10.1016/j.cam.2012.05.017
[9]  Boujraf, A., Sbibih, D., Tahrichi, M. and Tijini, A. (2015) A Simple Method for Constructing Integro Spline Quasi-Interpolants. Mathematics and Computers in Simulation, 111, 36-47.
https://doi.org/10.1016/j.matcom.2014.11.019
[10]  吴金明, 张雨, 张晓磊, 等. 积分值五次样条拟插值[J]. 计算机辅助设计与图形学学报, 2018, 30(5): 801-807.
[11]  彭兴璇, 常雪, 王倩. 基于积分值的MQ拟插值[J]. 数学的实践与认识, 2024, 54(12): 211-218.
[12]  Gao, W., Zhang, X. and Zhou, X. (2020) Multiquadric Quasi-Interpolation for Integral Functionals. Mathematics and Computers in Simulation, 177, 316-328.
https://doi.org/10.1016/j.matcom.2020.04.015
[13]  吴金明, 单婷婷, 朱春钢. 连续区间上积分值的MQ拟插值算子[J]. 系统科学与数学, 2019, 39(12): 1972-1982.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133