全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高阶Haar小波配置法求解五阶微分方程
The Solution of Fifth-Order Differential Equations by the High-Order Haar Wavelet Collocation Method

DOI: 10.12677/aam.2025.145275, PP. 465-475

Keywords: 高阶Haar小波,五阶微分方程,拟线性化方法,两点积分边界条件
Higher-Order Haar Wavelet
, Fifth-Order Differential Equation, Quasi-Linearization Method, Two-Point Integral Boundary Conditions

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用高阶Haar小波方法求解具有不同边界条件的五阶微分方程。对线性微分方程,使用高阶Haar小波配置法,将微分方程转化为线性代数方程组求解;对于非线性微分方程,则使用拟线性化方法将其转化为线性微分方程后求解。通过计算方程组系数矩阵的条件数,判断出方法的稳定性。数值实验表明,高阶Haar小波方法比经典的Haar小波方法有着更高的数值精度,可以用更少的配置点获得更小的误差,并且增加尺度误差下降得更快,通过求解最大绝对误差和均方根误差,得到了高阶Haar小波方法具有四阶精度的结论,数值计算结果与其他方法进行了比较。
This paper utilizes the high-order Haar wavelet method to solve fifth-order differential equations with different boundary conditions. For linear differential equations, the high-order Haar wavelet collocation method is employed to transform the differential equation into a system of linear algebraic equations for solution. For nonlinear differential equations, the quasi-linearization method is used to convert them into linear differential equations before solving. The stability of the method is determined by calculating the condition number of the coefficient matrix of the equation system. Numerical experiments show that the high-order Haar wavelet method has higher numerical accuracy than the classical Haar wavelet method, achieving smaller errors with fewer collocation points. Moreover, as the scale increases, the error decreases more rapidly. By solving the maximum absolute error and the root mean square error, it is concluded that the high-order Haar wavelet method has a fourth-order accuracy. The numerical results are compared with those of other methods.

References

[1]  马智慧. 微分方程在生物数学中的应用[J]. 教育进展, 2024, 14(5): 1481-1489.
[2]  Mechee, M.S. and Kadhim, M.A. (2016) Explicit Direct Integrators of RK Type for Solving Special Fifth-Order Ordinary Differential Equations. American Journal of Applied Sciences, 13, 1452-1460.
https://doi.org/10.3844/ajassp.2016.1452.1460
[3]  A. M. Al-fayyadh, K., Adel Fawzi, F. and Abbas Hussain, K. (2025) Exponentially Fitted-Diagonally Implicit Runge-Kutta Method for Direct Solution of Fifth-Order Ordinary Differential Equations. Journal of Al-Qadisiyah for Computer Science and Mathematics, 17, 142-158.
https://doi.org/10.29304/jqcsm.2025.17.12034
[4]  Amin, R. (2015) Haar Wavelet Method for the Solution of Sixth-Order Boundary Value Problems. Journal of Computational and Nonlinear Dynamics, 20, 1-8.
[5]  Ahsan, M., Lei, W., Junaid, M., Ahmed, M. and Alwuthaynani, M. (2024) A Numerical Solver Based on Haar Wavelet to Find the Solution of Fifth-Order Differential Equations Having Simple, Two-Point and Two-Point Integral Conditions. Journal of Applied Mathematics and Computing, 70, 5575-5601.
https://doi.org/10.1007/s12190-024-02176-3
[6]  周凤英, 何红梅, 朱合欢, 等. 分数阶微分方程的二维三尺度第3类Chebyshev小波法[J]. 广西大学学报(自然科学版), 2023, 48(1):226-235.
[7]  Majak, J., Pohlak, M., Karjust, K., Eerme, M., Kurnitski, J. and Shvartsman, B.S. (2018) New Higher Order Haar Wavelet Method: Application to FGM Structures. Composite Structures, 201, 72-78.
https://doi.org/10.1016/j.compstruct.2018.06.013
[8]  Ratas, M. and Salupere, A. (2020) Application of Higher Order Haar Wavelet Method for Solving Nonlinear Evolution Equations. Mathematical Modelling and Analysis, 25, 271-288.
https://doi.org/10.3846/mma.2020.11112
[9]  Bulut, F., Oruç, Ö. and Esen, A. (2022) Higher Order Haar Wavelet Method Integrated with Strang Splitting for Solving Regularized Long Wave Equation. Mathematics and Computers in Simulation, 197, 277-290.
https://doi.org/10.1016/j.matcom.2022.02.006
[10]  Yasmeen, S., Siraj-ul-Islam and Amin, R. (2023) Higher Order Haar Wavelet Method for Numerical Solution of Integral Equations. Computational and Applied Mathematics, 42, Article No. 147.
https://doi.org/10.1007/s40314-023-02283-0
[11]  Ahsan, M., Lei, W., Khan, A.A., Ahmed, M., Alwuthaynani, M. and Amjad, A. (2024) A Higher-Order Collocation Technique Based on Haar Wavelets for Fourth-Order Nonlinear Differential Equations Having Nonlocal Integral Boundary Conditions. Alexandria Engineering Journal, 86, 230-242.
https://doi.org/10.1016/j.aej.2023.11.066
[12]  楼钦艺, 许小勇, 何通森, 等. 高阶Haar小波方法求解一类Caputo-Fabrizio分数阶微分方程[J]. 江西科学, 2024, 42(3): 470-474.
[13]  Ahsan, M., Bohner, M., Ullah, A., Khan, A.A. and Ahmad, S. (2023) A Haar Wavelet Multi-Resolution Collocation Method for Singularly Perturbed Differential Equations with Integral Boundary Conditions. Mathematics and Computers in Simulation, 204, 166-180.
https://doi.org/10.1016/j.matcom.2022.08.004
[14]  Siddiqi, S.S. and Akram, G. (2007) Sextic Spline Solutions of Fifth Order Boundary Value Problems. Applied Mathematics Letters, 20, 591-597.
https://doi.org/10.1016/j.aml.2006.06.012
[15]  Lang, F. and Xu, X. (2010) A New Cubic B-Spline Method for Linear Fifth Order Boundary Value Problems. Journal of Applied Mathematics and Computing, 36, 101-116.
https://doi.org/10.1007/s12190-010-0390-y
[16]  Noor, M.A., Mohyud-Din, S.T. and Waheed, A. (2008) Variation of Parameters Method for Solving Fifth-Order Boundary Value Problems. Applied Mathematics & Information Sciences, 2, 135-141.
[17]  Zhang, J. (2009) The Numerical Solution of Fifth-Order Boundary Value Problems by the Variational Iteration Method. Computers & Mathematics with Applications, 58, 2347-2350.
https://doi.org/10.1016/j.camwa.2009.03.073

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133