全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

比例时滞复值BAM神经网络的稳定性研究
Research on Stability of Proportionally Delayed Complex-Valued BAM Neural Networks

DOI: 10.12677/aam.2025.145273, PP. 434-449

Keywords: 复值BAM神经网络,比例时滞,稳定性,Banach不动点定理
Complex-Valued BAM Neural Networks
, Proportional Delay, Stability, Banach Fixed Point Theorem

Full-Text   Cite this paper   Add to My Lib

Abstract:

BAM (Bidirectional Associative Memory)神经网络以其双向异联想性、较强的学习和自适应能力以及噪声容忍性好等特点,在模式分类和识别等方面具有广泛的应用前景。与实值神经网络相比,复值神经网络是一种基于复数运算的神经网络模型,可以有效地刻画如图像、声音等具有多个维度的信号,减少对信号的近似,从而提高模型的精度。因此,本文主要研究了一类比例时滞复值BAM神经网络的全局指数稳定性,利用Banach不动点定理,给出了这类神经网络全局指数稳定的充分条件。最后,举出具体的数值算例验证了结果的有效性。
BAM (Bidirectional Associative Memory) neural networks have significant potential for applications in pattern classification and recognition due to their bidirectional associations, robust learning and adaptive capabilities, and excellent noise tolerance. Compared with real-valued neural networks, complex-valued neural networks, which are based on complex operations, can more effectively represent multi-dimensional signals such as images and sounds. They reduce signal approximation errors and enhance model accuracy. Consequently, this paper primarily focuses on the global exponential stability of a class of proportional delay complex-valued BAM neural networks. By applying the Banach fixed point theorem, the sufficient conditions for the global exponential stability of these neural networks are given. Finally, a numerical example is provided to demonstrate the effectiveness of the results.

References

[1]  Kosko, B. (1988) Bidirectional Associative Memories. IEEE Transactions on Systems, Man, and Cybernetics, 18, 49-60.
https://doi.org/10.1109/21.87054
[2]  Yang, C., Huang, L. and Li, F. (2018) Exponential Synchronization Control of Discontinuous Nonautonomous Networks and Autonomous Coupled Networks. Complexity, 2018, Article ID: 6164786.
https://doi.org/10.1155/2018/6164786
[3]  Duan, L., Huang, L., Guo, Z. and Fang, X. (2017) Periodic Attractor for Reaction-Diffusion High-Order Hopfield Neural Networks with Time-Varying Delays. Computers & Mathematics with Applications, 73, 233-245.
https://doi.org/10.1016/j.camwa.2016.11.010
[4]  Zuo, Y., Wang, Y. and Liu, X. (2017) Adaptive Robust Control Strategy for Rhombus-Type Lunar Exploration Wheeled Mobile Robot Using Wavelet Transform and Probabilistic Neural Network. Computational and Applied Mathematics, 37, 314-337.
https://doi.org/10.1007/s40314-017-0538-6
[5]  Cao, J. and Li, X. (2005) Stability in Delayed Cohen-Grossberg Neural Networks: LMI Optimization Approach. Physica D: Nonlinear Phenomena, 212, 54-65.
https://doi.org/10.1016/j.physd.2005.09.005
[6]  Hirose, A. (2006) Complex-Valued Neural Networks: Theories and Applications. IEEE Transactions on Neural Networks, 17, 534.
[7]  Lee, D. (2003) Complex-Valued Neural Associative Memories: Network Stability and Learning Algorithm. In: Hirose, A., Ed., Complex-Valued Neural Networks, World Scientific, 29-55.
https://doi.org/10.1142/9789812791184_0003
[8]  Muezzinoglu, M.K., Guzelis, C. and Zurada, J.M. (2003) A New Design Method for the Complex-Valued Multistate Hopfield Associative Memory. IEEE Transactions on Neural Networks, 14, 891-899.
https://doi.org/10.1109/tnn.2003.813844
[9]  Jankowski, S., Lozowski, A. and Zurada, J.M. (1996) Complex-Valued Multistate Neural Associative Memory. IEEE Transactions on Neural Networks, 7, 1491-1496.
https://doi.org/10.1109/72.548176
[10]  Rakkiyappan, R., Velmurugan, G. and Li, X. (2014) Complete Stability Analysis of Complex-Valued Neural Networks with Time Delays and Impulses. Neural Processing Letters, 41, 435-468.
https://doi.org/10.1007/s11063-014-9349-6
[11]  赵莉莉. 具有时变时滞的复值BAM神经网络的概周期解[J]. 滨州学院学报, 2024, 40(2): 52-62.
[12]  闫欢, 宋乾坤, 赵振江. 时间标度上时滞脉冲复值神经网络的全局稳定性[J]. 应用数学和力学, 2015, 36(11): 1191-1203.
[13]  Chen, Y., Qiao, C., Hamdi, M. and Tsang, D.H.K. (2003) Proportional differentiation: A Scalable QoS Approach. IEEE Communications Magazine, 41, 52-58.
https://doi.org/10.1109/mcom.2003.1204748
[14]  Wei, J., Xu, C., Zhou, X. and Li, Q. (2006) A Robust Packet Scheduling Algorithm for Proportional Delay Differentiation Services. Computer Communications, 29, 3679-3690.
https://doi.org/10.1016/j.comcom.2006.06.009
[15]  Zhou, L. (2015) Novel Global Exponential Stability Criteria for Hybrid BAM Neural Networks with Proportional Delays. Neurocomputing, 161, 99-106.
https://doi.org/10.1016/j.neucom.2015.02.061
[16]  王雅菁. 具有时滞的复值神经网络稳定性分析[D]: [硕士学位论文]. 厦门: 集美大学, 2017.
[17]  张磊, 宋乾坤. 带有比例时滞的复值神经网络全局指数稳定性[J]. 应用数学和力学, 2018, 39(5): 584-591.
[18]  Burton, T.A. and Furumochi, T. (2002) Krasnoselskii’s Fixed Point Theorem and Stability. Nonlinear Analysis: Theory, Methods & Applications, 49, 445-454.
https://doi.org/10.1016/s0362-546x(01)00111-0
[19]  Burton, T.A. (2003) Stability by Fixed Point Theory or Liapunov’s Theory: A Comparison. Fixed Point Theory, 4, 15-32.
[20]  Burton, T.A. (2004) Fixed Points and Stability of a Nonconvolution Equation. Proceedings of the American Mathematical Society, 132, 3679-3687.
https://doi.org/10.1090/s0002-9939-04-07497-0
[21]  Burton, T.A. and Furumochi, T. (2001) A Note on Stability by Schauder’s Theorem. Funkcialaj Ekvacioj, 44, 73-82.
[22]  Rao, R., Zhong, S. and Pu, Z. (2017) LMI-Based Robust Exponential Stability Criterion of Impulsive Integro-Differential Equations with Uncertain Parameters via Contraction Mapping Theory. Advances in Difference Equations, 2017, Article No. 19.
https://doi.org/10.1186/s13662-016-1059-0
[23]  Rao, R., Zhong, S. and Pu, Z. (2019) Fixed Point and p-Stability of T-S Fuzzy Impulsive Reaction-Diffusion Dynamic Neural Networks with Distributed Delay via Laplacian Semigroup. Neurocomputing, 335, 170-184.
https://doi.org/10.1016/j.neucom.2019.01.051
[24]  Luo, J. (2007) Fixed Points and Stability of Neutral Stochastic Delay Differential Equations. Journal of Mathematical Analysis and Applications, 334, 431-440.
https://doi.org/10.1016/j.jmaa.2006.12.058
[25]  Pu, Z. and Rao, R. (2018) Exponential Stability Criterion of High-Order BAM Neural Networks with Delays and Impulse via Fixed Point Approach. Neurocomputing, 292, 63-71.
https://doi.org/10.1016/j.neucom.2018.02.081
[26]  Zhou, L. and Zhang, Y. (2016) Global Exponential Stability of a Class of Impulsive Recurrent Neural Networks with Proportional Delays via Fixed Point Theory. Journal of the Franklin Institute, 353, 561-575.
https://doi.org/10.1016/j.jfranklin.2015.10.021
[27]  Chen, G., van Gaans, O. and Verduyn Lunel, S. (2014) Fixed Points Andpth Moment Exponential Stability of Stochastic Delayed Recurrent Neural Networks with Impulses. Applied Mathematics Letters, 27, 36-42.
https://doi.org/10.1016/j.aml.2013.08.005
[28]  张恭庆, 林源渠. 泛函分析讲义.上册[M]. 北京: 北京大学出版社, 2005: 1-5.
[29]  谢东. 几类复值神经网络的动力学行为研究[D]: [博士学位论文]. 长沙: 湖南大学, 2017.
[30]  钟玉泉. 复变函数论[M]. 第4版. 高等教育出版社, 2013: 33-34.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133