全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高维传染病模型的流形分析
Manifold Analysis of Higher-Dimensional Epidemiological Model

DOI: 10.12677/aam.2025.145270, PP. 406-411

Keywords: 全局分析,传染病模型,一维中心流形
Global Analysis
, Epidemiological Model, One-Dimensional Central Manifold

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究高维传染病模型如SEIR模型,其中在某种条件下可获得一维中心流形的存在性结论。
This paper focuses on high-dimensional Epidemiological models such as the SEIR model, in which conclusions about the existence of a one-dimensional central manifold can be obtained under certain conditions.

References

[1]  Veeresha, P., Prakasha, D.G. and Kumar, D. (2020) Fractional SIR Epidemic Model of Childhood Disease with Mittag-Leffler Memory. In: Kumar, D. and Singh, J., Eds., Fractional Calculus in Medical and Health Science, CRC Press, 229-248.
https://doi.org/10.1201/9780429340567-9
[2]  Sidi Ammi, M.R., Tahiri, M. and Torres, D.F.M. (2020) Global Stability of a Caputo Fractional SIRS Model with General Incidence Rate. Mathematics in Computer Science, 15, 91-105.
https://doi.org/10.1007/s11786-020-00467-z
[3]  Muldowney, J.S. (1990) Compound Matrices and Ordinary Differential Equations. Rocky Mountain Journal of Mathematics, 20, 857-872.
https://doi.org/10.1216/rmjm/1181073047
[4]  Hale, J.K. (1969) Ordinary Differential Equations. John Wiley and Sons.
[5]  Liu, X. and Han, M. (2005) Bifurcation of Periodic Orbits of a Three-Dimensional System. Chinese Annals of Mathematics, 26, 253-274.
https://doi.org/10.1142/s025295990500021x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133