|
ERA5高空数据在贵阳机场冬季运行中的适用性分析
|
Abstract:
为评估ERA5再分析数据在贵阳机场高空气象要素方面的适用性,本文将ERA5数据与贵阳机场的实际观测数据进行了比较分析,深入探讨了其在温度、湿度、气压以及风场等常规气象要素上的具体表现。研究结果显示,ERA5数据与贵阳机场实际观测数据基本一致,其中ERA5的温度资料与微波辐射计的温度在低层的一致性较高,ERA5的值比微波辐射计测得的值偏大,总的平均偏差为1.9℃;ERA5的温度资料与微波辐射计的相对湿度随着高度的增加差异越大,均方根误差和平均偏差平均值分别为13%和10%;ERA5的风速资料比风廓线雷达的风速偏小,均方根误差和平均偏差的平均值分别为3.1 m/s和1.3 m/s,相关性高达0.93;ERA5的风向资料与风廓线雷达的风向越到高层差异越小,反应的主要方位角基本一致。
To assess the applicability of ERA5 reanalysis data in upper air meteorological elements at Guiyang Airport, this paper compares ERA5 data with the actual observational data of Guiyang Airport and explores its performance in conventional meteorological elements such as temperature, humidity, air pressure, and wind field. The results show that ERA5 data is generally consistent with the actual observational data of Guiyang Airport. The temperature data of ERA5 is highly consistent with the temperature measured by microwave radiometer in the lower layer, but the values of ERA5 are larger than those measured by microwave radiometer, with an average deviation of 1.9?C. The relative humidity data of ERA5 and the relative humidity measured by microwave radiometer have greater differences as the height increases, with the average values of root-mean-square error and average deviation being 13% and 10% respectively. The wind speed data of ERA5 is smaller than that measured by wind profiler radar, with the average values of root-mean-square error and average deviation being 3.1 m/s and 1.3 m/s respectively, and the correlation is as high as 0.93. The difference between the wind direction data of ERA5 and the wind direction measured by wind profiler radar becomes smaller in the upper layer, and the main azimuth angles they reflect are basically the same.
[1] | Albergel, C., Dutra, E., Bonan, B., Zheng, Y., Munier, S., Balsamo, G., et al. (2019) Monitoring and Forecasting the Impact of the 2018 Summer Heatwave on Vegetation. Remote Sensing, 11, Article 520. https://doi.org/10.3390/rs11050520 |
[2] | Urraca, R., Huld, T., Gracia-Amillo, A., Martinez-de-Pison, F.J., Kaspar, F. and Sanz-Garcia, A. (2018) Evaluation of Global Horizontal Irradiance Estimates from ERA5 and COSMO-REA6 Reanalyses Using Ground and Satellite-Based Data. Solar Energy, 164, 339-354. https://doi.org/10.1016/j.solener.2018.02.059 |
[3] | Liu, J., Hagan, D.F.T. and Liu, Y. (2020) Global Land Surface Temperature Change (2003-2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land Based Analysis. Remote Sensing, 13, Article 44. https://doi.org/10.3390/rs13010044 |
[4] | 刘佳, 陈艳, 王曼, 等. ERA-Interim及ERA5在中国西南复杂地形区的适用性对比分析[J]. 高原山地气象研究, 2023, 43(1): 95-103. |
[5] | 温婷婷, 郭英香, 董少睿, 等. 1979-2017年CRU, ERA5, CMFD格点降水数据在青藏高原适用性评估[J]. 干旱区研究, 2022, 39(3): 684-697. |
[6] | 麦哲宁, 许东蓓, 孙继松, 等. 基于ERA-5高分辨率资料的高原低涡客观识别方法研究[J]. 大气科学, 2022, 48(5): 1991-2003. |
[7] | 张亚男, 罗浩. 风廓线雷达产品在贵州降雪冻雨天气中的特征分析[J]. 气象科技, 2024, 52(2): 252-264. |
[8] | 赵美艳, 余君 蒋镇. 重庆微波辐射计资料的评估和探测特征分析[J]. 沙漠与绿洲气象, 2022, 16(5): 118-126. |
[9] | 左泉, 鲍艳松, 董焱, 许丹, 吴莹. 风廓线雷达数据精度评价与质量控制方法[J]. 遥感信息, 2020, 35(5): 37-44. |