With the aim to contribute to the search for the source of placer gold, the Les Saras sector, located in the south-western part of the Republic of the Congo in the Mayombe chain, has been the subject of a study aimed to characterize the mineralogical composition of artisanally mined gold placers. Sediment samples collected from the local drainage system were analyzed using scanning electron microscopy (SEM) and electron microprobe techniques. Results show that the placers are mainly composed of oxides (ilmenite, cassiterite, columbo-tantalite and rutile), followed by silicates (garnets), rare earths (monazite) and native elements (gold). The ilmenites exhibit high TiO2 (54 - 57 wt%) and FeO (37 - 43 wt%) content, while rutiles are chemically pure. Garnets are classified as almandine- and pyrope-type, and monazites show enrichment in lanthanum (21 - 28 wt%) and cerium (8 - 11 wt%). The angular morphology of gold grains suggests limited transport. Geochemical analyses reveal the presence of Ag, Bi, and Cu as associated elements, along with a peripheral enrichment in gold attributed to selective silver leaching. Two distinct types of gold grains were identified based on fineness: 1) high-fineness grains (up to 988) with low Ag content (<5%), and 2) low-fineness grains (as low as ~670) enriched in Ag (20% - 33%). These compositional differences, along with the geochemical signatures of the associated minerals, suggest two potential sources for the gold: high-temperature hydrothermal systems for the first type and epithermal deposits for the second. However, the limited number of analyzed grains for some species points to the need for further analyses, including fluid inclusion studies, to refine the interpretation of the deposit’s origin.
References
[1]
Frimmel, H.E., Tack, L., Basei, M.S., Nutman, A.P. and Boven, A. (2006) Provenance and Chemostratigraphy of the Neoproterozoic West Congolian Group in the Democratic Republic of Congo. JournalofAfricanEarthSciences, 46, 221-239. https://doi.org/10.1016/j.jafrearsci.2006.04.010
[2]
Frimmel, H.E., Basei, M.S. and Gaucher, C. (2010) Neoproterozoic Geodynamic Evolution of SW-Gondwana: A Southern African Perspective. InternationalJournalofEarthSciences, 100, 323-354. https://doi.org/10.1007/s00531-010-0571-9
[3]
Jébrak, M. (2010) Manual of Gîtology. University of Quebec at Montreal, Depart-ment of Earth Sciences, Version 3.1, 129.
[4]
Mbenoun, A.M., Ngon, G.F.N., Bayiga, E.C., Fouateu, R.Y. and Bilong, P. (2013) Gold Behavior in Weathering Products of Quartz Vein in Mintom Area South Cameroon (Central Africa). InternationalJournalofGeosciences, 4, 1401-1410. https://doi.org/10.4236/ijg.2013.410137
[5]
Mbenoun, A.M., Ngon, G.F.N., Mbog, M.B., Fouateu, R.Y. and Bilong, P. (2021) Study of the Behavior of Gold and Accompanying Chemical Elements in Weathering Profile on a Quartz Vein in Mintom (South Cameroon, Central Africa). EarthScienceResearch, 10, 54-68. https://doi.org/10.5539/esr.v10n2p54
[6]
Mathieu, L. (2015) Indicator Minerals: Garnet, Pyroxene, Spinel, Tourmaline, Olivine and Others. Report, Projet CONSOREM-01, 27.
[7]
Belmedrek, S. (2006) Granulometry and Heavy Minerals of Dune and Beach Sands from the Oued Zhour and Béni Bélaid Sectors. Ph.D. Thesis, University Mentouri Constantine.
[8]
McClenaghan, M.B. (2011) Overview of Common Processing Methods for Recovery of Indicator Minerals from Sediment and Bedrock in Mineral Exploration. Geochemistry: Exploration, Environment, Analysis, 11, 265-278. https://doi.org/10.1144/1467-7873/10-im-025
[9]
Heilbron, M. and Machado, N. (2003) Timing of Terrane Accretion in the Neoproterozoic-Eopaleozoic Ribeira Orogen (se Brazil). PrecambrianResearch, 125, 87-112. https://doi.org/10.1016/s0301-9268(03)00082-2
[10]
Pedrosa-Soares, A.C., Alkmim, F.F., Tack, L., Noce, C.M., Babinski, M., Silva, L.C., et al. (2008) Similarities and Differences between the Brazilian and African Counterparts of the Neoproterozoic Araçuaí-West Congo Orogen. GeologicalSociety, London, SpecialPublications, 294, 153-172. https://doi.org/10.1144/sp294.9
[11]
Pedrosa-Soares, A.C. and de Alkmim, F.F. (2011) How Many Rifting Events Preceded the Development of the Araçuaí-West Congo Orogen? Geonomos, 19, 244-251.
[12]
Fauck, R. (1974) The Factors and Mechanisms of Pedogenesis in Red and Yellow Ferallitic Soils on Sand and Sandstone in Africa, Cah. ORSTOM, XII, 69-72.
[13]
Jamet, R. (1974) Soil Study with 1/200,000-Scale Map Les Saras. ORSTOM, 215.
[14]
Jamet, R. and Rieffel, J.M. (1976) Explanatory Note for the Congo Soil Map 1/200.000. Pointe-Noire sheet and Loubomo sheet ORSTOM, 177.
[15]
Schwartz, D. and Lanfranchi, R. (1980) The Origin of Gold Deposits in the Central Mayombe (Congo) Some Hypotheses, Surface Geodynamics, Pedologist. ORSTOM, 155-160.
[16]
Parisot, J.C., Ventos, V., Grandin, G., Bourges, F., Debat, P., Tollon, F. and Millo, L. (1995) Dynamics of Gold and Other Heavy Minerals in a Cuirass Weathering Profile from Burkina Faso, West Africa, Interest for the Interpretation of the Emplacement of Materials Constituting High Glacis Cuirasses. Geosciences de Surface, 321, 295-302.
[17]
Mpemba-Boni, J. (1990) Contribution to the Study of Ante-Pan Magmatism of the Mayombe Chain. The Example of the Les Saras Massif (SW Congo, Central Africa) Structural Petrology-Geochemistry-Geochronology. Ph.D. Thesis, University of Nancy 1.
[18]
Fullgraf, T., Callec, Y., Thiéblemont, D., Gloaguen, E., Le Métour, J., Boudzoumou, F., Delhaye-Prat, V., Kebi-Tsoumou, S. and Ndiele, B. (2015) Geological map of the Repub-lic of Congo at 1:200,000, Feuille Dolisie. Editions BRGM, 342.
[19]
Joachim Djama, L.M., Matiaba Bazika, U.V., Boudzoumou, F. and Mouzeo, K. (2018) Petrology and Geodynamic Context of Metabasic Rocks of Nemba Complex in the West Congo Fold Belt (Republic of Congo). InternationalJournalofGeosciences, 9, 1-18. https://doi.org/10.4236/ijg.2018.91001
[20]
Bouénitela, V.T.T., Matiaba-Bazika, U.V., Makamba, N.L., Nkodia, H.M.D., Kebi-Tsoumou, S.P.C. and Boudzoumou, F. (2024) An Overview of the Present State of Knowledge in the Tectonostratigraphic Evolution of the West Congo Belt in Republic of Congo. InternationalJournalofGeosciences, 15, 1038-1063. https://doi.org/10.4236/ijg.2024.1512055
[21]
Bazika, U.V.M., Bouénitéla, V.T.T., Lekeba, N.M. and Boudzoumou, F. (2022) Petrology and Geochemistry of Loukounga Metabasites Rocks: Constraining the Geodynamic Context of Neoproterozoic Nemba Complex in the Mayombe Belt. OpenJournalofGeology, 12, 919-946. https://doi.org/10.4236/ojg.2022.1211044
[22]
Matiaba-Bazika, U.V., Lekeba Makamba, N., Bouénitéla, V.T.T., Tchiguina, N.C.B., Miyouna, T. and Boudzoumou, F. (2024) Geochemical and Petrological Insights into the Neoproterozoic Moumba Metabasites: Implications for Crustal Processes in the West Congo Belt (Republic of Congo). JournalofGeoscienceandEnvironmentProtection, 12, 1-29. https://doi.org/10.4236/gep.2024.122001
[23]
Tack, L. (2001) Early Neoproterozoic Magmatism (1000-910 Ma) of the Zadinian and Mayumbian Groups (Bas-Congo): Onset of Rodinia Rifting at the Western Edge of the Congo Craton. PrecambrianResearch, 110, 277-306. https://doi.org/10.1016/s0301-9268(01)00192-9
[24]
Noce, C.M., Pedrosa-Soares, A.C., da Silva, L.C., Armstrong, R. and Piuzana, D. (2007) Evolution of Polycyclic Basement Complexes in the Araçuaí Orogen, Based on U-Pb SHRIMP Data: Implications for Brazil-Africa Links in Paleoproterozoic Time. PrecambrianResearch, 159, 60-78. https://doi.org/10.1016/j.precamres.2007.06.001
[25]
Nsungani, P.C. (2012) The Pan-African Chain of Northwestern Angola: Petro-Structural, Geochemical and Geochronological Study. Implications géodynamiques. Ph.D. Thesis, Université Montpellier II.
[26]
Hossié, G. (1980) Contribution to the Structural Study of Chain. Ph.D. Thesis, University of Montpellier.
[27]
Boudzoumou, F. (1986) The West-Congolian Range and Its Foreland in Congo: Relation to the Mayombian, Sedimentology of Sequences of Upper Proterozoic Age. Ph.D. Thesis, University of Aix Marseille.
[28]
Djama, L.M. (1988) The Mfoubou Granitic Massif and the Guéna Metamorphic Basement (Chaine duMayombe-Congo). Petrology-Geochemistry-Geochronology. Ph.D. Thesis, University of Nancy I.
[29]
Maurin, J.C, Boudzoumou, F., Djama, L.M., Gioan, P., Michard, A., Mpemba-Boni, J., Peucat, J.J., Pin, C. and Vicat, J.P. (1991) The West Congolian Proterozoic Chain and Its Foreland in the Congo: New Geochronological and Structural Data, Implications for Central Africa. Proceedingsofthe Academy of Sciences ofParis, II, 312, 1327-1334.
[30]
Maurin, J.C. (1993) The West Congolian Pan-African Chain: Correlation with the East Brazilian Domain and Geodynamic Hypothesis. Journal ofGeologicalSocietyofFrance, 164, 51-60.
[31]
Dadet, P. (1969) Explanatory Note for the Geological Map of the Republic of Congo Brazzaville at 1:500,000 Scale. BRGM Paris, 107.
[32]
Boudzoumou, F. and Trompette, R. (1988) La chaine panafricaine ouest-congolienne au Congo (Afrique equatoriale); Un socle polycyclique charrie sur un domaine subautochtone forme par l’aulacogene du Mayombe et le bassin de l’Ouest-Congo. BulletindelaSociétéGéologiquedeFrance, IV, 889-896. https://doi.org/10.2113/gssgfbull.iv.6.889
[33]
Bouénitéla, V.T.T. (2019) The Paleoproterozoic (Eburnian) Domain of the Ma-yombe Range (Congo-Brazzaville): Origin of and Tectono-Metamorphic Evolution. Ph.D. Thesis, Université de Rennes1, Géosciences.
[34]
Le Bayon, B., Callec, Y., Lasseur, E., Thiéblemont, D., Paquet, F., Gouin, J., Giresse, P., Makolobongo, B., Obambi, U., Moulounda Niangui, E. and Miassouka Mpika, R. (2015) Geological Map of the Republic of Congo 1:200,000, Conkouati Sheet. Editions BRGM.
[35]
Cosson, J. (1955) Explanatory Note on the Pointe-Noire and Brazzaville Sheets. Geological Map 1:500,000 Scale Reconnaissance Survey. JournaloftheDirectionofMiningandGeologyofFrenchEquatorialAfrica, 56.
[36]
Vellutini, P., Rocci, G., Vicat, J. and Gioan, P. (1983) Mise en évidence de complexes ophiolitiques dans la chaîne du Mayombe (Gabon—Angola) et nouvelle interprétation géotectonique. PrecambrianResearch, 22, 1-21. https://doi.org/10.1016/0301-9268(83)90056-6
[37]
Affaton, P., Kalsbeek, F., Boudzoumou, F., Trompette, R., Thrane, K. and Frei, R. (2016) The Pan-African West Congo Belt in the Republic of Congo (Congo Brazzaville): Stratigraphy of the Mayombe and West Congo Supergroups Studied by Detrital Zircon Geochronology. PrecambrianResearch, 272, 185-202. https://doi.org/10.1016/j.precamres.2015.10.020
[38]
Daubois, V. (2016) Analysis of Heavy Minerals from Glacial and Fluvioglacial Sediments in the Clova Region, Ministry of Energy and Natural Resources, Department of Natural Resources. Province of Greville Quebec, 5.
[39]
Watha Ndoudy, N. (1993) Morphological and Geochemical Characteristics of Gold Grains; Application to Prospecting of the Mayoko Placers (Congo). Ph.D. Thesis, INPL Nancy.
[40]
Parfenoff, A., Pomerol, C. and Tourenq, J. (1970) Granular Minerals, Method of Study and Determination. Edition Masson, 578.
[41]
Watha-Ndoudy, N., Okoumel, P.E.W., Miyouna, T., Mpika, R.H.A., Massala, E.G., Mibantsa, G.S., et al. (2023) Characterization of Gold Bearing Placers and Associated Minerals in the Elogo Region (North-West Congo Republic). OpenJournalofGeology, 13, 287-305. https://doi.org/10.4236/ojg.2023.135014
[42]
Boyle, R.W. (1979) The Geochemistry of Gold and Its Deposits. Geological Survey of Canada, 584.
[43]
Metz, P.A. and Hawkins, D.B. (1981) A Summary of Gold Fineness Values from Alaska Placer Deposits. School of Mineral Industry University of Alaska Fairbanks, Alaska 99701. MIRL Report No. 45, 17.
[44]
Essaifi, A., Ballèvre, M., Marignac, C. and Capdevila, R. (2001) Découverte et signification d’une paragenèse à ilménite zincifère dans les métapélites des Jebilet centrales (Maroc). ComptesRendusdel’AcadémiedesSciences—SeriesIIA—EarthandPlanetaryScience, 333, 381-388. https://doi.org/10.1016/s1251-8050(01)01655-x
[45]
Ercit, T.S., Wise, M.A. and Cerny, P. (1995) Compositional and Structural Systematics of the Columbite Group. AmericanMineralogist, 80, 613-619. https://doi.org/10.2138/am-1995-5-619
[46]
Anderson, M.O., Lentz, D.R., McFarlane, C.R.M. and Falck, H. (2013) A Geological, Geochemical and Textural Study of an LCT Pegmatite: Implications for the Magmatic versus Metasomatic Origin of Nb-Ta Mineralization in the Moose II Pegmatite, Northwest Territories, Canada. JournalofGEOsciences, 58, 299-320. https://doi.org/10.3190/jgeosci.149
[47]
Ballouard, C., Carr, P., Parisot, F., Gloaguen, É., Melleton, J., Cauzid, J., et al. (2024) Petrogenesis and Tectonic-Magmatic Context of Emplacement of Lepidolite and Petalite Pegmatites from the Fregeneda-Almendra Field (Variscan Central Iberian Zone): Clues from Nb-Ta-Sn Oxide U-Pb Geochronology and Mineral Geochemistry. BSGF—EarthSciencesBulletin, 195, Article 3. https://doi.org/10.1051/bsgf/2023015
[48]
Caddick, M.J., Konopásek, J. and Thompson, A.B. (2010) Preservation of Garnet Growth Zoning and the Duration of Prograde Metamorphism. JournalofPetrology, 51, 2327-2347. https://doi.org/10.1093/petrology/egq059
[49]
Abreal, A. (2010) Les Grenats des Pegmatites. Journal of Personal Minearlogist, 13, 149-181.
[50]
Abreal, A. (2020) Cristallisation des grenats Influence du manganese. Journal of Personal Minearlogist, 14, 107-125.
[51]
Chao, Y., Yin, J., Yin, Y., Shi, H. and Xiang, S. (2022) Occurrence State and Proper-ties of Gold Minerals from the Gold Deposits on the North China Platform. Euro-peanJournalofAppliedSciences, 10, 504-513.
[52]
Nikiforova, Z. (2024) Mineralogical Method as an Effective Way to Predict Gold Ore Types of Deposits in Platform Areas (East of the Siberian Platform). Minerals, 14, Article 631. https://doi.org/10.3390/min14060631
[53]
Chapman, R.J., Leake, R.C., Warner, R.A., Cahill, M.C., Moles, N.R., Shell, C.A., et al. (2006) Microchemical Characterisation of Natural Gold and Artefact Gold as a Tool for Provenancing Prehistoric Gold Artefacts: A Case Study in Ireland. AppliedGeochemistry, 21, 904-918. https://doi.org/10.1016/j.apgeochem.2006.01.007
[54]
Shuster, J., Lengke, M., Márquez-Zavalía, M.F. and Southam, G. (2016) Floating Gold Grains and Nanophase Particles Produced from the Biogeochemical Weathering of a Gold-Bearing Ore. EconomicGeology, 111, 1485-1494. https://doi.org/10.2113/econgeo.111.6.1485
[55]
Townley, B.K., Hérail, G., Maksaev, V., Palacios, C., Parseval, P.d., Sepulveda, F., et al. (2003) Gold Grain Morphology and Composition as an Exploration Tool: Application to Gold Exploration in Covered Areas. Geochemistry: Exploration, Environment, Analysis, 3, 29-38. https://doi.org/10.1144/1467-787302-042
[56]
Masson, F., Beaudoin, G. and Laurendeau, D. (2020) Quantification of the Morphology of Gold Grains in 3D Using X-Ray Microscopy and SEM Photogrammetry. JournalofSedimentaryResearch, 90, 286-296. https://doi.org/10.2110/jsr.2020.16
[57]
Lalomov, A., Grigorieva, A., Kotov, A. and Ivanova, L. (2023) Typomorphic Features and Source of Native Gold from the Sykhoi Log Area Placer Deposits, Bodaibo Gold-Bearing District, Siberia, Russia. Minerals, 13, Article 707. https://doi.org/10.3390/min13050707
[58]
de Oliveira, S.M.B. and de Oliveira, N.M. (2000) The Morphology of Gold Grains Associated with Oxidation of Sulphide-Bearing Quartz Veins at São Bartolomeu, Central Brazil. JournalofSouthAmericanEarthSciences, 13, 217-224. https://doi.org/10.1016/s0895-9811(00)00021-3
[59]
Hérail, G., Fornari, M., Viscarre, G. and Mirande, V. (1990) Morphologique et évolu-tion chimique des grains d’or lors de la formation d’un placer fluviatile polygénique: L’exemple du placer Mio-Pléistocène Tipuani (Bolivie). ChroniquedelaRechercheMinière, 500, 41-49.
[60]
Auger, C.C. (2016) Chemical Composition of Indicator Minerals from the Kittilä Mine. Master’s Thesis, Laval University.
[61]
Bruni, Y. and Hatert, F. (2017) Étude minéralogique de l’or et de ses minéraux accompagnateurs sur le pourtour du massif cambro-ordovicien de Serpont, Belgique. BulletindelaSociétéRoyaledesSciencesdeLiège, 86, 113-168. https://doi.org/10.25518/0037-9565.7243
[62]
Dilabio, R.N.W. (1991) Classification and Interpretation of the Shapes and Surface Textures of Gold Grains from Till. In: Herail, G. and Fornari, M., Eds., Gisementsalluviauxd’or, ORSTOM, 297-313.
[63]
Groen, J.C., Craig, J.R. and Rimstidt, J.D. (1990) Gold-Rich Rim Formation on Electrum Grains in Placers. CanadianMineralogist, 28, 207-228.
[64]
Fairbrother, L., Brugger, J., Shapter, J., Laird, J.S., Southam, G. and Reith, F. (2012) Supergene Gold Transformation: Biogenic Secondary and Nano-Particulate Gold from Arid Australia. ChemicalGeology, 320, 17-31. https://doi.org/10.1016/j.chemgeo.2012.05.025
[65]
Palacios, C., Herail, G., Townley, B., Maksaev, V., Sepulveda, F., de Parseval, P., et al. (2001) The Composition of Gold in the Cerro Casale Gold-Rich Porphyry Deposit, Maricunga Belt, Northern Chile. TheCanadianMineralogist, 39, 907-915. https://doi.org/10.2113/gscanmin.39.3.907
[66]
Phelps, P.R., Lee, C.A. and Morton, D.M. (2020) Episodes of Fast Crystal Growth in Pegmatites. NatureCommunications, 11, Article No. 4986. https://doi.org/10.1038/s41467-020-18806-w
[67]
Anand, R., Lintern, M., Hough, R., Noble, R., Verrall, M., Salama, W., et al. (2017) The Dynamics of Gold in Regolith Change with Differing Environmental Conditions over Time. Geology, 45, 127-130. https://doi.org/10.1130/g38591.1
[68]
Yesares, L., Aiglsperger, T., Sáez, R., Almodóvar, G.R., Nieto, J.M., Proenza, J.A., et al. (2015) Gold Behavior in Supergene Profiles under Changing Redox Conditions: The Example of the Las Cruces Deposit, Iberian Pyrite Belt. EconomicGeology, 110, 2109-2126. https://doi.org/10.2113/econgeo.110.8.2109
[69]
Groves, D.I., Santosh, M., Müller, D., Zhang, L., Deng, J., Yang, L., et al. (2022) Mineral Systems: Their Advantages in Terms of Developing Holistic Genetic Models and for Target Generation in Global Mineral Exploration. GeosystemsandGeoenvironment, 1, Article ID: 100001. https://doi.org/10.1016/j.geogeo.2021.09.001