全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CRISPR-Cas9 and beyond: Expanding the Frontiers of Gene Editing

DOI: 10.4236/abb.2025.165012, PP. 190-206

Keywords: Gene Editing, CRISPR-Cas Systems, Medical Applications, Ethical Considerations

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gene editing technology, which allows for precise modifications to an organism’s genome, has emerged as a transformative tool in genetic engineering. This review introduces the fundamental concepts and mechanisms of gene editing, with a particular emphasis on CRISPR-Cas systems. The principles and methods used in the development and optimization of gene editing tools, including base editing and prime editing, are discussed. The review also summarizes the applications of gene editing in medicine, agriculture, and biotechnology, highlighting its potential to address complex biological challenges. Finally, the review outlines the current challenges and ethical considerations in the field of gene editing research.

References

[1]  Pacesa, M., Pelea, O. and Jinek, M. (2024) Past, Present, and Future of CRISPR Genome Editing Technologies. Cell, 187, 1076-1100.
https://doi.org/10.1016/j.cell.2024.01.042
[2]  Chehelgerdi, M., Chehelgerdi, M., KhorramianGhahfarokhi, M., Shafieizadeh, M., Mahmoudi, E., Eskandari, F., et al. (2024) Correction: Comprehensive Review of Crispr-Based Gene Editing: Mechanisms, Challenges, and Applications in Cancer Therapy. Molecular Cancer, 23, Article No. 43.
https://doi.org/10.1186/s12943-024-01961-9
[3]  Christian, M., Cermak, T., Doyle, E.L., Schmidt, C., Zhang, F., Hummel, A., et al. (2010) Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. Genetics, 186, 757-761.
https://doi.org/10.1534/genetics.110.120717
[4]  Joung, J.K. and Sander, J.D. (2012) Talens: A Widely Applicable Technology for Targeted Genome Editing. Nature Reviews Molecular Cell Biology, 14, 49-55.
https://doi.org/10.1038/nrm3486
[5]  Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337, 816-821.
https://doi.org/10.1126/science.1225829
[6]  Kim, D., Luk, K., Wolfe, S.A. and Kim, J. (2019) Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Annual Review of Biochemistry, 88, 191-220.
https://doi.org/10.1146/annurev-biochem-013118-111730
[7]  Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., et al. (2015) Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 Crispr-Cas System. Cell, 163, 759-771.
https://doi.org/10.1016/j.cell.2015.09.038
[8]  Kleinstiver, B.P., Sousa, A.A., Walton, R.T., Tak, Y.E., Hsu, J.Y., Clement, K., et al. (2019) Engineered Crispr-cas12a Variants with Increased Activities and Improved Targeting Ranges for Gene, Epigenetic and Base Editing. Nature Biotechnology, 37, 276-282.
https://doi.org/10.1038/s41587-018-0011-0
[9]  Abudayyeh, O.O., Gootenberg, J.S., Essletzbichler, P., Han, S., Joung, J., Belanto, J.J., et al. (2017) RNA Targeting with Crispr-cas13. Nature, 550, 280-284.
https://doi.org/10.1038/nature24049
[10]  Kaminski, M.M., Abudayyeh, O.O., Gootenberg, J.S., Zhang, F. and Collins, J.J. (2021) CRISPR-Based Diagnostics. Nature Biomedical Engineering, 5, 643-656.
https://doi.org/10.1038/s41551-021-00760-7
[11]  Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A. and Liu, D.R. (2016) Programmable Editing of a Target Base in Genomic DNA without Double-Stranded DNA Cleavage. Nature, 533, 420-424.
https://doi.org/10.1038/nature17946
[12]  Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., et al. (2017) Programmable Base Editing of A∙T to G∙C in Genomic DNA without DNA Cleavage. Nature, 551, 464-471.
https://doi.org/10.1038/nature24644
[13]  Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., et al. (2019) Search-and-Replace Genome Editing without Double-Strand Breaks or Donor DNA. Nature, 576, 149-157.
https://doi.org/10.1038/s41586-019-1711-4
[14]  Yu, X., Huo, G., Yu, J., Li, H. and Li, J. (2023) Prime Editing: Its Systematic Optimization and Current Applications in Disease Treatment and Agricultural Breeding. International Journal of Biological Macromolecules, 253, Article ID: 127025.
https://doi.org/10.1016/j.ijbiomac.2023.127025
[15]  Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., et al. (2007) CRISPR Provides Acquired Resistance against Viruses in Prokaryotes. Science, 315, 1709-1712.
https://doi.org/10.1126/science.1138140
[16]  Nishimasu, H., Ran, F.A., Hsu, P.D., Konermann, S., Shehata, S.I., Dohmae, N., et al. (2014) Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA. Cell, 156, 935-949.
https://doi.org/10.1016/j.cell.2014.02.001
[17]  Lieber, M.R. (2010) The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway. Annual Review of Biochemistry, 79, 181-211.
https://doi.org/10.1146/annurev.biochem.052308.093131
[18]  Attar, N. (2015) An Intriguing New Bacterial Phylum. Nature Reviews Microbiology, 13, 459-459.
https://doi.org/10.1038/nrmicro3534
[19]  Pickar-Oliver, A. and Gersbach, C.A. (2019) The Next Generation of Crispr-cas Technologies and Applications. Nature Reviews Molecular Cell Biology, 20, 490-507.
https://doi.org/10.1038/s41580-019-0131-5
[20]  Janik, E., Niemcewicz, M., Ceremuga, M., Krzowski, L., Saluk-Bijak, J. and Bijak, M. (2020) Various Aspects of a Gene Editing System—CRISPR-Cas9. International Journal of Molecular Sciences, 21, Article No. 9604.
https://doi.org/10.3390/ijms21249604
[21]  Sternberg, S.H., LaFrance, B., Kaplan, M. and Doudna, J.A. (2015) Conformational Control of DNA Target Cleavage by CRISPR-Cas9. Nature, 527, 110-113.
https://doi.org/10.1038/nature15544
[22]  Fiflis, D.N., Rey, N.A., Venugopal-Lavanya, H., Sewell, B., Mitchell-Dick, A., Clements, K.N., et al. (2024) Repurposing Crispr-Cas13 Systems for Robust mRNA Trans-splicing. Nature Communications, 15, Article No. 2325.
https://doi.org/10.1038/s41467-024-46172-4
[23]  Kick, L.M., von Wrisberg, M., Runtsch, L.S. and Schneider, S. (2022) Structure and Mechanism of the RNA Dependent Rnase Cas13a from Rhodobacter Capsulatus. Communications Biology, 5, Article No. 71.
https://doi.org/10.1038/s42003-022-03025-4
[24]  Kim, S., Yuan, J.B., Woods, W.S., Newton, D.A., Perez-Pinera, P. and Song, J.S. (2023) Chromatin Structure and Context-Dependent Sequence Features Control Prime Editing Efficiency. Frontiers in Genetics, 14, Article ID: 1222112.
https://doi.org/10.3389/fgene.2023.1222112
[25]  Vakulskas, C.A., et al. (2018) A High-Fidelity Cas9 Mutant Delivered as a Ribonucleoprotein Complex Enables Efficient Gene Editing in Human Hematopoietic Stem and Progenitor Cells. Nature Medicine, 24, 1216-1224.
https://doi.org/10.1038/s41591-018-0137-0
[26]  Musunuru, K., Chadwick, A.C., Mizoguchi, T., Garcia, S.P., DeNizio, J.E., Reiss, C.W., et al. (2021) In Vivo CRISPR Base Editing of PCSK9 Durably Lowers Cholesterol in Primates. Nature, 593, 429-434.
https://doi.org/10.1038/s41586-021-03534-y
[27]  Koeppel, J., Weller, J., Peets, E.M., Pallaseni, A., Kuzmin, I., Raudvere, U., et al. (2023) Prediction of Prime Editing Insertion Efficiencies Using Sequence Features and DNA Repair Determinants. Nature Biotechnology, 41, 1446-1456.
https://doi.org/10.1038/s41587-023-01678-y
[28]  Petrova, I.O. and Smirnikhina, S.A. (2023) The Development, Optimization and Future of Prime Editing. International Journal of Molecular Sciences, 24, Article No. 17045.
https://doi.org/10.3390/ijms242317045
[29]  Zeng, H., Daniel, T.C., Lingineni, A., Chee, K., Talloo, K. and Gao, X. (2024) Recent Advances in Prime Editing Technologies and Their Promises for Therapeutic Applications. Current Opinion in Biotechnology, 86, Article ID: 103071.
https://doi.org/10.1016/j.copbio.2024.103071
[30]  Doudna, J.A. and Charpentier, E. (2014) The New Frontier of Genome Engineering with CRISPR-Cas9. Science, 346, Article ID: 1258096.
https://doi.org/10.1126/science.1258096
[31]  Frangoul, H., Altshuler, D., Cappellini, M.D., Chen, Y., Domm, J., Eustace, B.K., et al. (2021) CRISPR-Cas9 Gene Editing for Sickle Cell Disease and Β-Thalassemia. New England Journal of Medicine, 384, 252-260.
https://doi.org/10.1056/nejmoa2031054
[32]  Tabebordbar, M., Zhu, K., Cheng, J.K.W., Chew, W.L., Widrick, J.J., Yan, W.X., et al. (2016) In Vivo Gene Editing in Dystrophic Mouse Muscle and Muscle Stem Cells. Science, 351, 407-411.
https://doi.org/10.1126/science.aad5177
[33]  Huang, Y., Xuan, H., Yang, C., Guo, N., Wang, H., Zhao, J., et al. (2019) GmHsp90A2 Is Involved in Soybean Heat Stress as a Positive Regulator. Plant Science, 285, 26-33.
https://doi.org/10.1016/j.plantsci.2019.04.016
[34]  Chohan, K.L., Siegler, E.L. and Kenderian, S.S. (2023) CAR-T Cell Therapy: The Efficacy and Toxicity Balance. Current Hematologic Malignancy Reports, 18, 9-18.
https://doi.org/10.1007/s11899-023-00687-7
[35]  Dimitri, A., Herbst, F. and Fraietta, J.A. (2022) Engineering the Next-Generation of CAR T-Cells with CRISPR-Cas9 Gene Editing. Molecular Cancer, 21, Article No. 78.
https://doi.org/10.1186/s12943-022-01559-z
[36]  Hockemeyer, D. and Jaenisch, R. (2016) Induced Pluripotent Stem Cells Meet Genome Editing. Cell Stem Cell, 18, 573-586.
https://doi.org/10.1016/j.stem.2016.04.013
[37]  Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., et al. (2016) Enhanced Rice Blast Resistance by Crispr/cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene Oserf922. PLOS ONE, 11, e0154027.
https://doi.org/10.1371/journal.pone.0154027
[38]  Zsögön, A., Čermák, T., Naves, E.R., Notini, M.M., Edel, K.H., Weinl, S., et al. (2018) De Novo Domestication of Wild Tomato Using Genome Editing. Nature Biotechnology, 36, 1211-1216.
https://doi.org/10.1038/nbt.4272
[39]  Le, Y., Zhang, M., Wu, P., Wang, H. and Ni, J. (2024) Biofuel Production from Lignocellulose via Thermophile-Based Consolidated Bioprocessing. Engineering Microbiology, 4, Article ID: 100174.
https://doi.org/10.1016/j.engmic.2024.100174
[40]  Mescouto, V.A.D., Ferreira, L.D.C., Paiva, R.D.J., Oliveira, D.T.D., de Oliveira, M.S., Rocha Filho, G.N.D., et al. (2024) Review of Recent Advances in Improvement Strategies for Biofuels Production from Cyanobacteria. Heliyon, 10, e40293.
https://doi.org/10.1016/j.heliyon.2024.e40293
[41]  Baeshen, N.A., Baeshen, M.N., Sheikh, A., Bora, R.S., Ahmed, M.M.M., Ramadan, H.A.I., et al. (2014) Cell Factories for Insulin Production. Microbial Cell Factories, 13, Article No. 141.
https://doi.org/10.1186/s12934-014-0141-0
[42]  Diep, P., Mahadevan, R. and Yakunin, A.F. (2018) Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms. Frontiers in Bioengineering and Biotechnology, 6, Article No. 157.
https://doi.org/10.3389/fbioe.2018.00157
[43]  Modell, A.E., Lim, D., Nguyen, T.M., Sreekanth, V. and Choudhary, A. (2022) Crispr-based Therapeutics: Current Challenges and Future Applications. Trends in Pharmacological Sciences, 43, 151-161.
https://doi.org/10.1016/j.tips.2021.10.012
[44]  Wang, D., Tai, P.W.L. and Gao, G. (2019) Adeno-Associated Virus Vector as a Platform for Gene Therapy Delivery. Nature Reviews Drug Discovery, 18, 358-378.
https://doi.org/10.1038/s41573-019-0012-9
[45]  Huang, X., et al. (2024) A Brain-Wide CRISPR Screen Identifies Neuronal Circuits Regulating Sleep. Cell, 187, 398-412.
[46]  Yin, et al. (2023) Efficient Genome Editing in Plants Using a CRISPR/Cas9 System with tRNA-sgRNA Fusions. Science Advances, 9, eadf4561.
[47]  Stadtmauer, E.A., Fraietta, J.A., Davis, M.M., Cohen, A.D., Weber, K.L., Lancaster, E., et al. (2020) CRISPR-Engineered T Cells in Patients with Refractory Cancer. Science, 367, eaba7365.
https://doi.org/10.1126/science.aba7365
[48]  Yin, H., Song, C., Dorkin, J.R., Zhu, L.J., Li, Y., Wu, Q., et al. (2016) Therapeutic Genome Editing by Combined Viral and Non-Viral Delivery of CRISPR System Components in Vivo. Nature Biotechnology, 34, 328-333.
https://doi.org/10.1038/nbt.3471
[49]  Rim, J.H., et al. (2021) CRISPR-Cas9 in Vivo Gene Editing for Transthyretin Amyloidosis. The New England Journal of Medicine, 385, 1722.
[50]  Donev, E.N., Derba‐Maceluch, M., Yassin, Z., Gandla, M.L., Pramod, S., Heinonen, E., et al. (2023) Field Testing of Transgenic Aspen from Large Greenhouse Screening Identifies Unexpected Winners. Plant Biotechnology Journal, 21, 1005-1021.
https://doi.org/10.1111/pbi.14012
[51]  Al-Osaimi, H.M., Kanan, M., Marghlani, L., Al-Rowaili, B., Albalawi, R., Saad, A., et al. (2024) A Systematic Review on Malaria and Dengue Vaccines for the Effective Management of These Mosquito Borne Diseases: Improving Public Health. Human Vaccines & Immunotherapeutics, 20, Article ID: 2337985.
https://doi.org/10.1080/21645515.2024.2337985
[52]  Wedell, N., Price, T.A.R. and Lindholm, A.K. (2019) Gene Drive: Progress and Prospects. Proceedings of the Royal Society B: Biological Sciences, 286, Article ID: 20192709.
https://doi.org/10.1098/rspb.2019.2709
[53]  Adolfi, A., Gantz, V.M., Jasinskiene, N., Lee, H., Hwang, K., Terradas, G., et al. (2020) Efficient Population Modification Gene-Drive Rescue System in the Malaria Mosquito Anopheles stephensi. Nature Communications, 11, Article No. 5553.
https://doi.org/10.1038/s41467-020-19426-0
[54]  Kyrou, K., Hammond, A.M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A.K., et al. (2018) A CRISPR-Cas9 Gene Drive Targeting Doublesex Causes Complete Population Suppression in Caged Anopheles Gambiae Mosquitoes. Nature Biotechnology, 36, 1062-1066.
https://doi.org/10.1038/nbt.4245
[55]  Carballar-Lejarazú, R. and James, A.A. (2017) Population Modification of Anopheline Species to Control Malaria Transmission. Pathogens and Global Health, 111, 424-435.
https://doi.org/10.1080/20477724.2018.1427192
[56]  Li, M., Yang, T., Kandul, N.P., Bui, M., Gamez, S., Raban, R., et al. (2020) Development of a Confinable Gene Drive System in the Human Disease Vector Aedes Aegypti. eLife, 9, e51701.
https://doi.org/10.7554/elife.51701
[57]  Li, T., Yang, Y., Qi, H., Cui, W., Zhang, L., Fu, X., et al. (2023) Crispr/cas9 Therapeutics: Progress and Prospects. Signal Transduction and Targeted Therapy, 8, Article No. 36.
https://doi.org/10.1038/s41392-023-01309-7
[58]  Yin, H., Kauffman, K.J. and Anderson, D.G. (2017) Delivery Technologies for Genome Editing. Nature Reviews Drug Discovery, 16, 387-399.
https://doi.org/10.1038/nrd.2016.280
[59]  Baylis, F. (2019) Altered Inheritance: CRISPR and the Ethics of Human Genome Editing. Science, 366, 165-166.
[60]  International Society for Stem Cell Research (2021) ISSCR Guidelines for Stem Cell Research and Clinical Translation.
[61]  Cyranoski, D. (2019) The CRISPR-Baby Scandal: What’s Next for Human Gene-Editing. Nature, 566, 440-442.
https://doi.org/10.1038/d41586-019-00673-1
[62]  Pew Research Center (2023) Public Views on Gene Editing for Babies and Disease Treatment.
[63]  Saha, K., Hurlbut, J.B., Jasanoff, S., Ahmed, A., Appiah, A., Bartholet, E., et al. (2018) Building Capacity for a Global Genome Editing Observatory: Institutional Design. Trends in Biotechnology, 36, 741-743.
https://doi.org/10.1016/j.tibtech.2018.04.008
[64]  U.S. Food and Drug Administration (2023) BLA 125746: Casgevy (exagamglogene autotemcel).
[65]  Knoppers, B.M. and Chadwick, R. (2005) Human Genetic Research: Emerging Trends in Ethics. Nature Reviews Genetics, 6, 75-79.
https://doi.org/10.1038/nrg1505
[66]  Rozas, P., Kessi-Pérez, E.I. and Martínez, C. (2022) Genetically Modified Organisms: Adapting Regulatory Frameworks for Evolving Genome Editing Technologies. Biological Research, 55, Article No. 31.
https://doi.org/10.1186/s40659-022-00399-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133