In quantum mechanics, besides the Copenhagen interpretation where the wave function collapses upon observation to yield a single measurement value, there is the many-worlds interpretation initiated by Everett. If this many-worlds interpretation is correct, it implies that the real world splits into many, leading to the existence of so-called branching universes (parallel universes). Traditionally, it has been considered impossible to prove this existence, but I have discovered that it can logically be demonstrated by conducting experiments like the ones outlined below. Therefore, in order to deepen our understanding of the universe, I would like to have individuals with the necessary technology and knowledge carry out this experiment to prove the existence of branching universes.
References
[1]
Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A. and Roch, J. (2007) Experimental Realization of Wheeler’s Delayed-Choice Gedanken Experiment. Science, 315, 966-968.
[2]
Aspect, A. (1971) Contribution à l’étude de la spectrographie de Fourier par holographie. https://doi.org/10.1088/0029-4780/1/2/498
[3]
Aspect, A. (1983) Trois tests expérimentaux des inégalités de Bell par mesure de corrélation de polarisation de photons. Master’s Thesis, Universite de Paris-Sud.
[4]
Freedman, S.J. and Clauser, J.F. (1972) Experimental Test of Local Hidden-Variable Theories. Physical Review Letters, 28, 938-941. https://doi.org/10.1103/physrevlett.28.938
[5]
Aspect, A., Grangier, P. and Roger, G. (1981) Experimental Tests of Realistic Local Theories via Bell’s Theorem. Physical Review Letters, 47, 460-463. https://doi.org/10.1103/physrevlett.47.460
[6]
Aspect, A., Grangier, P. and Roger, G. (1982) Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedanken Experiment: A New Violation of Bell’s Inequalities. Physical Review Letters, 49, 91-94. https://doi.org/10.1103/physrevlett.49.91
[7]
Aspect, A., Dalibard, J. and Roger, G. (1982) Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers. Physical Review Letters, 49, 1804-1807. https://doi.org/10.1103/physrevlett.49.1804
[8]
Grangier, P., Roger, G. and Aspect, A. (1986) Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences. Europhysics Letters (EPL), 1, 173-179. https://doi.org/10.1209/0295-5075/1/4/004
[9]
Jelezko, F., Volkmer, A., Popa, I., Rebane, K.K. and Wrachtrup, J. (2003) Coherence Length of Photons from a Single Quantum System. Physical Review A, 67, Article ID: 041802. https://doi.org/10.1103/physreva.67.041802
[10]
Zeilinger, A., Weihs, G., Jennewein, T. and Aspelmeyer, M. (2005) Happy Centenary, Photon. Nature, 433, 230-238. https://doi.org/10.1038/nature03280
[11]
Jacques, V., Wu, E., Toury, T., Treussart, F., Aspect, A., Grangier, P., et al. (2005) Single-Photon Wavefront-Splitting Interference. The European Physical Journal D, 35, 561-565. https://doi.org/10.1140/epjd/e2005-00201-y
[12]
Bohr, N. (1984) Spectroscopie de Fourier par holographie à haute luminosité. In: Wheeler, J.A. and Zurek, W.H., Eds., Quantum Theory and Measurement, Princeton University Press, 9-49.
[13]
Greenstein, G. and Zajonc, A.G. (1997) The Quantum Challenge. Jones and Bartlett Publishers.
[14]
Hellmut, T., Walther, H., Zajonc, A.G. and Schleich, W. (1987) Delayed-choice experiments in quantum interference. Physical Review A, 35, 2532. https://doi.org/10.1103/PhysRevA.35.2532
[15]
O’Brien, J.L., Zhou, X.-Q., Roberto, A., Lawson, T., Laing, A. and Martín-López, E. (2012) Experimental realization of Shor's quantum factoring algorithm using qubit recycling. Nature Photonics, 6, 773-776. https://doi-org/10.48550/arXiv.1111.4147
[16]
Martín-López, E., Laing, A., Lawson, T., Alvarez, R., Zhou, X. and O’Brien, J.L. (2012) Experimental Realization of Shor’s Quantum Factoring Algorithm Using Qubit Recycling. Nature Photonics, 6, 773-776. https://doi.org/10.1038/nphoton.2012.259
Kasai, K., Zhang, Y. and Sasaki, M. (2004) 3-4 Generation and Application of Quantum-Correlated Twin Beams. Journal of the National Institute of Information and Communications Technology, 51, 69-78.
[19]
Toyoshima, M., et al. (2015) Current Status of Research and Development for Space Quantum Cryptography Communications in NICT. 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), New Orleans, 26-28 October 2015, 1-5.
[20]
Harada, K., Akashi, T., Takahashi, Y., et al. (2021) Electron Interference Experiment with Optically Zero Propagation Distance for V-Shaped Double Slit. Applied Physics Express, 14, Article ID: 022006. https://doi.org/10.35848/1882-0786/abd91e
[21]
Tosima, K. and Harimoto, T. (2018) Simultaneous Observation of Optical-Wave and Single-Photon Interferences with a Michelson Twin Interferometer. Japanese Journal of Optics: Publication of the Optical Society of Japan 47, 8, 346-350.
[22]
Aharonov, Y., Albert, D.Z. and Vaidman, L. (1988) How the Result of a Measurement of a Component of the Spin of a Spin-1/2 Particle Can Turn Out to Be 100. Physical Review Letters, 60, 1351-1354. https://doi.org/10.1103/physrevlett.60.1351
[23]
Takahashi, T. (2013) Rationality in Quantum Decision Theory. Kagaku Tetsugaku, 46, 17-30. https://doi.org/10.4216/jpssj.46.17
[24]
Ellis, G. and Silk, J. (2014) Scientific Method: Defend the Integrity of Physics. Nature, 516, 321-323. https://doi.org/10.1038/516321a