Correlation of High Iron Content in Groundwater of the State of Bahia, Brazil with Climate, Lithology, Soil and Vegetation, Using Multivariable Analyses
This work developed a statistical correlation between groundwater’s high iron content in the four hydrogeological domains of the State of Bahia, Brazil, and the environmental attributes of climate, lithology, soil, and vegetation. From 3539 wells, flow test ≥ 1 m3?h?1, drilling period 2003-2013, 940 wells with high iron content (>0.3 mg/L) were used in this study. All groundwater samples came from new wells soon after the drilling, well construction, and a long pumping time for their development: 24 hours for sedimentary aquifers and 12 hours for karstic, crystalline, and metasedimentary aquifers. The application of Pearson and Spearman linear regression to seventeen physicochemical parameters (SPSS V.12) resulted in no correlations between iron and fourteen parameters, indicating no common origin between those parameters and iron. Only color and turbidity presented correlations > 0.20 with iron. After spatializing the 940 values of iron concentration (ArcGIS V.9) on the maps of each environmental attribute, grades 1 - 5 were given to the variables of each attribute based on the largest iron concentration value. The grades allowed the application of multivariable methods PCA and FA (SPSS V.12). The PCA indicated two factors explaining 59.52% of the total variance, closely attending the recommended minimum of 60%. The significant factor weights from the application of FA were: in Factor 1, soil, ?0.71; vegetation, ?0.68; and lithology, ?0.52; and in Factor 2, climate, +0.74. Indeed, in the crystalline and metasedimentary domains with mafic-ultramafic rocks rich in iron, percentages of wells, 53.3% - 66.7%, occurred in iron-rich soils; of 49.8% - 59.8% in humid to dry forest and of 55.3% - 86.8% in humid to sub-humid climate. While, for the sedimentary domain (primarily sandstones) and karstic domain (carbonate rocks) poor in iron content percentages of wells, 80.9% - 100% occurred in iron-rich soils, 57.0% - 61.8% in humid to dry forest, and 58.6% - 62.4% in sub-humid to dry and semi-arid climate. These results indicated that, although lithology is a determinant for high dissolved iron content in the state of Bahia groundwater, this attribute alone (factor weight ?0.52) cannot explain the whole phenomenon. The present work, using multivariable analysis with geospatial mapping of high iron content on top of environmental attributes, revealed the role of each environmental attribute in groundwater’s high iron content. For the governmental drilling well company and its
References
[1]
Thomas, E.O. (2023) Evaluation of Groundwater Quality Using Multivariate, Parametric and Non-Parametric Statistics, and GWQI in Ibadan, Nigeria. Water Science, 37, 117-130. https://doi.org/10.1080/23570008.2023.2221493
[2]
Ismail, E., Snousy, M.G., Alexakis, D.E., Gamvroula, D.E., Howard, G., El Sayed, E., et al. (2023) Multivariate Statistical Analysis and Geospatial Mapping for Assessing Groundwater Quality in West El Minia District, Egypt. Water, 15, Article 2909. https://doi.org/10.3390/w15162909
[3]
Mehdi, M., Hakim, D., Amina, A. and Nourredine, G. (2023) Multivariate Statistical Analysis of Groundwater Quality in the Region of Hassi R’mel, Algeria. Journal of Ecological Engineering, 24, 22-31. https://doi.org/10.12911/22998993/161140
[4]
Patel, P.S., Pandya, D.M. and Shah, M. (2023) A Holistic Review on the Assessment of Groundwater Quality Using Multivariate Statistical Techniques. Environmental Science and Pollution Research, 30, 85046-85070. https://doi.org/10.1007/s11356-023-27605-x
[5]
Barkat, A., Bouaicha, F., Bouteraa, O., Mester, T., Ata, B., Balla, D., et al. (2021) Assessment of Complex Terminal Groundwater Aquifer for Different Use of Oued Souf Valley (Algeria) Using Multivariate Statistical Methods, Geostatistical Modeling, and Water Quality Index. Water, 13, Article 1609. https://doi.org/10.3390/w13111609
[6]
Gaikwad, S., Gaikwad, S., Meshram, D., Wagh, V., Kandekar, A. and Kadam, A. (2019) Geochemical Mobility of Ions in Groundwater from the Tropical Western Coast of Maharashtra, India: Implication to Groundwater Quality. Environment, Development and Sustainability, 22, 2591-2624. https://doi.org/10.1007/s10668-019-00312-9
[7]
Machiwal, D., Jha, M.K., Singh, V.P. and Mohan, C. (2018) Assessment and Mapping of Groundwater Vulnerability to Pollution: Current Status and Challenges. Earth-Science Reviews, 185, 901-927. https://doi.org/10.1016/j.earscirev.2018.08.009
[8]
Gaikwad, S.K., Kadam, A.K., Ramgir, R.R., Kashikar, A.S., Wagh, V.M., Kandekar, A.M., et al. (2020) Assessment of the Groundwater Geochemistry from a Part of West Coast of India Using Statistical Methods and Water Quality Index. HydroResearch, 3, 48-60. https://doi.org/10.1016/j.hydres.2020.04.001
[9]
Wu, J., Li, P., Wang, D., Ren, X. and Wei, M. (2019) Statistical and Multivariate Statistical Techniques to Trace the Sources and Affecting Factors of Groundwater Pollution in a Rapidly Growing City on the Chinese Loess Plateau. Human and Ecological Risk Assessment: An International Journal, 26, 1603-1621. https://doi.org/10.1080/10807039.2019.1594156
[10]
Li, P., Tian, R. and Liu, R. (2018) Solute Geochemistry and Multivariate Analysis of Water Quality in the Guohua Phosphorite Mine, Guizhou Province, China. Exposure and Health, 11, 81-94. https://doi.org/10.1007/s12403-018-0277-y
[11]
Cloutier, V., Lefebvre, R., Therrien, R. and Savard, M.M. (2008) Multivariate Statistical Analysis of Geochemical Data as Indicative of the Hydrogeochemical Evolution of Groundwater in a Sedimentary Rock Aquifer System. Journal of Hydrology, 353, 294-313. https://doi.org/10.1016/j.jhydrol.2008.02.015
[12]
Barbosa Filho, J. and de Oliveira, I.B. (2021) Development of a Groundwater Quality Index: GWQI, for the Aquifers of the State of Bahia, Brazil Using Multivariable Analyses. Scientific Reports, 11, Article No. 16520. https://doi.org/10.1038/s41598-021-95912-9
[13]
Gomes, M.D.C.R., Anjos, J.Â.S.A.D. and Daltro, R.R. (2020) Multivariate Statistical Analysis Applied to the Evaluation of Groundwater Quality in the Central-Southern Portion of the State of Bahia-Brazil. Ambiente e Agua—An Interdisciplinary Journal of Applied Science, 15, e2408. https://doi.org/10.4136/ambi-agua.2408
[14]
Gomes, M.d.C.R. and Cavalcante, I.N. (2017) Aplicação da análise estatística multivariada no estudo da qualidade da água subterrânea. Águas Subterrâneas, 31, 134-149. https://doi.org/10.14295/ras.v31i1.28617
[15]
Freeze, A.R. and Cherry, J.A. (1979) Groundwater. Prentice Hall Inc, 604. http://www.sciepub.com
[16]
Oliveira, D.A., Schmidt, G. and Macedo de Freitas, D. (2004) Avaliação do teor de ferro nas águas subterrâneas de alguns poços tubulares no plano diretor de Palmas. Anais do XXXI Congreso Interamericano de Ingeniería Sanitaria y Ambiental, AIDIS, San Juan, 20-22 Novembro 2004, 22-27. https://aidisnet.org
[17]
Nascimento, S.A.M. (2008) Diagnóstico hidrogeológico, hidroquímico e da qualidade da água do aquífero freático do alto cristalino de Salvador-Bahia. Ph.D. Thesis, Instituto de Geociências da Universidade Federal da Bahia. https://repositorio.ufba.br
[18]
Carmo, J.C.C. (2016) Ferro na água subterrânea do Estado da Bahia: Uma avaliação preliminar dos fatores influentes na concentração. Master’s Thesis, Universidade Federal da Bahia. https://repositorio.ufba.br
[19]
Siqueira, L.F.S., Rojas, M.O.A.I. and Neto, J.D.J.G.D.C. (2011) Determinação espectrométrica de ferro (II) pelo sistema fe (II)/ kscn em água do mar da praia do calhau, são luis, maranhão (Brasil). Acta Tecnológica, 6, 27-34. https://doi.org/10.35818/acta.v6i1.40
[20]
Ityel, D. (2011) Ground Water: Dealing with Iron Contamination. Water & Wastewater. https://www.filtsep.com
[21]
Zimbres, E. (2002) Química das Águas. Universidade Estadual do Rio de Janeiro/RJ. https://www.meioambiente.pro.br/agua/quimica.htm
[22]
Szikszay, M. (2012) Geoquímica das águas. Boletim IG/USP, 167. https://www.revistas.usp.br
[23]
Schoeller, N. (1962) Les eaux souterraines. Mason, 642.
[24]
Carroll, D. (1962) Rainwater as a Chemical Agent of Geologic Processes: A Review. U.S. Geological Survey Water Supply Paper, 1535-G, 1-18.
[25]
Matthess, G. (1982) The Properties of Groundwater. John Wiley & Sons, 406.
[26]
Perel’man, A.L. (1963) The Aquatic Transport and Biologic Absorption of Elements in the Soil. In: Schoeller, M., Ed., Recherches sur l’aquisition de la composition chimique des eau souterraines, 179-187.
BRASIL (2021) Portaria. No. 888, de 4 de maio de 2021. Altera o Anexo XX da Portaria de Consolidação GM/MS nº 5, de 28 de setembro de 2017, para dispor sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. https://www.gov.br
[29]
Bahia (2003) Plano Estadual de Recursos Hídricos. Secretaria de Infraestrutura, Superintendência de Recursos Hídricos. Consortium MAGNA-BRL. http://www.inema.ba.gov.br
[30]
CERB (2014) Dados hidrogeológicos de poços. Salvador: Companhia de Engenharia Ambiental e Recursos Hídricos da Bahia; Divisão de Cadastro Hidrogeológico. Relatório de Gestão 2007/2014. http://www.cerb.ba.gov.br
[31]
Brasil (2011) Portaria nº 2.914, de 12 de dezembro de 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. https://www.gov.br
[32]
Lima, E.A., Beraldo, V.J., Guilera, S.C., Brandão, L.C.R. and Costa, E.A. (2009) Mapa de variação da qualidade das águas subterrâneas da região do nordeste do Brasil para uso na irrigação. Revista Águas Subterrâneas, 1-13. https://aguassubterraneas.abas.org
[33]
Guerra, A.M. and Negrão, F.I. (1996) Domínios hidrogeológicos do estado da Bahia. Anais do IX Congresso Brasileiro de Águas Subterrâneas, Salvador: ABAS. https://aguassubterraneas.abas.org
[34]
Barbosa, J.S.F. and Dominguez, J.M.L. (1996) Texto explicativo do Mapa Geológico da Bahia, ao milionésimo. SICM/SGM, 400. http://www.ppegeo.igc.usp.br
[35]
Moruzzi, R.B. and Reali, M.A.P. (2012) Oxidação e remoção de ferro e manganês em águas para fins de abastecimento público ou industrial-uma abordagem geral. Revista de Engenharia e Tecnologia, 4, 29-43. https://repositorio.unesp.br
Brady, N.C. (1989) Natureza e Propriedade dos Solos. 7ª Edição, Atena Editora, 878. https://www.atenaeditora.com.br
[38]
Schwertmann, U. and Cornell, M. (2018) Iron Oxides in the Laboratory: Preparation and Characterization. John Wiley & Sons.
[39]
Richter, C.A. and Azevedo Netto, J.M. (1991) Tratamento de água: Tecnologia atualizada. Edgard Blücher, 332. http://www.cesa.eng.uerj.br
[40]
Clesceri, L.S., Greenberg, A.E. and Eaton, A.D. (1998) Standard Methods for the Examination of Water. 20th Edition, American Public Health Association, American Water Works Association, Water Environment Federation, 1325.
[41]
ESRI (2004) ArcGIS, Version 9; ArcView, Version 9.3. http://www.esri.com
[42]
SPSS (2003) Statistical Package for Social Sciences for Windows Version 12, Chica-go, USA. https://www.stata-brasil.com
[43]
Lever, J., Krzywinski, M. and Altman, N. (2017) Points of Significance: Principal component analysis. Nature Methods, 14, 641-642. https://doi.org/10.1038/nmeth.4346
[44]
Pérez-Arribas, L.V., León-González, M.E. and Rosales-Conrado, N. (2017) Learning Principal Component Analysis by Using Data from Air Quality Networks. Journal of Chemical Education, 94, 458-464. https://doi.org/10.1021/acs.jchemed.6b00550
[45]
Zanella, A., Lima, L.S. and Lopes, L.F.D. (2007) Identificação de fatores que influenciam na satisfação dos clientes de um Clube Recreativo por meio da Análise Fatorial. RevistaGestão Da ProduçãoOperações E Sistemas, 3, 167-176. https://revista.feb.unesp.br
[46]
Hair Jr., J.F., Anderson, R.E., Tatham, R.L. and Black, W.C. (2005) Análise Multivariada de Dados. 5th Edition, Bookman, 593. https://pt.slideshare.net
[47]
Negrão, F.I. (2008) Hidrogeologia do Estado da Bahia: Qualidade, potencialidade, disponibilidade, vulnerabilidade e grau de poluição. Ph.D. Thesis, Universidade da Coruña. https://ruc.udc.es
[48]
CETESB (2015) Companhia Ambiental do Estado de São Paulo. https://www.cetesb.sp.gov.br