|
全真空蒸发法制备Cs3Bi2I9全无机类钙钛矿光电探测器
|
Abstract:
光电晶体管是一种三端光电探测器,由于栅极的放大作用,通常比光电二极管具有更高的光电流增益。本文采用全真空蒸发法制备了酞菁铜(CuPc)和Cs3Bi2I9 (CBI)异质结的广谱光电晶体管。由于CuPc和CBI的紫外-可见互补吸收,该器件在三种不同类型的可见光照明下均表现出优异的性能。实验结果表明,该有机/钙钛矿异质结活性层结构具有相容性好、工艺简单等特点。同时,利用钙钛矿材料优越的光吸收特性和异质结界面强激子解离效率,CuPc/CBI-OPT具有比CuPc基准器件更高的光响应性、光敏性、比检出率和更低的工作电压。稳定性测试表明,CuPc/CBI-PT在没有任何封装的情况下在空气中储存360 h后,在660 nm光照下仍能获得0.73 A/W的光响应性。这表明有机/钙钛矿异质结PT可能是制备高性能光电探测器的良好选择。
A phototransistor is a three-terminal photodetector that typically exhibits higher photocurrent gain compared to a photodiode, attributed to the amplification effect of the gate. In this study, we have successfully fabricated a broad-spectrum phototransistor featuring a copper phthalocyanine (CuPc) and cesium trithioindate (Cs3Bi2I9, CBI) heterojunction via a full vacuum evaporation process. Benefiting from the complementary UV-visible absorption properties of CuPc and CBI, the device demonstrates superior performance under various visible light illumination conditions. Experimental findings indicate that the organic/perovskite-like heterojunction active layer structure possesses excellent compatibility and a straightforward fabrication process. Leveraging the exceptional light absorption capabilities of perovskite-like materials and the efficient exciton dissociation at heterojunction interfaces, the CuPc/CBI phototransistor (CuPc/CBI-PT) achieves enhanced photoresponsivity, sensitivity, specific detection rate, and reduced operating voltage compared to reference CuPc devices. Stability assessments reveal that the CuPc/CBI-PT maintains a photoresponsivity of 0.73 A/W at 660 nm after 360 hours of air exposure without encapsulation. These results suggest that organic/perovskite-like heterojunction phototransistors may serve as a promising candidate for high-performance photodetectors.
[1] | Narayan, K.S. and Kumar, N. (2001) Light Responsive Polymer Field-Effect Transistor. Applied Physics Letters, 79, 1891-1893. https://doi.org/10.1063/1.1404131 |
[2] | Iqbal, M.A., Fang, X., Abbas, Y., Weng, X., He, T. and Zeng, Y. (2024) Unlocking High-Performance Near-Infrared Photodetection: Polaron-Assisted Organic Integer Charge Transfer Hybrids. Light: Science & Applications, 13, Article No. 318. https://doi.org/10.1038/s41377-024-01695-9 |
[3] | Zhao, B., Huang, X., Chung, S., Zhang, M., Zhong, Y., Liang, A., et al. (2025) Hole-Selective-Molecule Doping Improves the Layer Thickness Tolerance of PEDOT:PSS for Efficient Organic Solar Cells. eScience, 5, Article ID: 100305. https://doi.org/10.1016/j.esci.2024.100305 |
[4] | Perumalveeramalai, C., Zheng, J., Bellam, J.B., Pammi, S., Zhang, X. and Li, C. (2025) Solution-Processed, Ultrasensitive, High Current Density Vertical Phototransistor Using Porous Carbon Nanotube Electrode. Applied Surface Science, 680, Article ID: 161414. https://doi.org/10.1016/j.apsusc.2024.161414 |
[5] | Chen, W., Lin, Y., Syu, Z., Wu, Y., Lin, K., Liu, C., et al. (2024) Surface Ligand Engineering of Perovskite Quantum Dots for N-Type and Stretchable Photosynaptic Transistor with an Ultralow Energy Consumption. Chemical Engineering Journal, 494, Article ID: 152897. https://doi.org/10.1016/j.cej.2024.152897 |
[6] | Liao, K., Lian, Y., Yu, M., et al. (2025) Hetero-Integrated Perovskite/Si3N4 On-Chip Photonic System. Nature Photonics, 19, 358-368. |
[7] | Feng, S., Liu, C., Zhu, Q., Su, X., Qian, W., Sun, Y., et al. (2021) An Ultrasensitive Molybdenum-Based Double-Heterojunction Phototransistor. Nature Communications, 12, Article No. 4094. https://doi.org/10.1038/s41467-021-24397-x |
[8] | Yang, B., Wang, Y., Li, L., et al. (2021) High Performance Ternary Organic Phototransistors with Photoresponse up to 2600 nm at Room Temperature. Advanced Functional Materials, 31, Article ID: 2103787. |
[9] | Yang, C., Xie, Y., Zheng, L., Liu, H., Liu, P., Wang, F., et al. (2025) High Performance Phototransistor Based on 0D-CsPbBr3/2D-MoS2 Heterostructure with Gate Tunable Photo-Response. Nanomaterials, 15, Article No. 307. https://doi.org/10.3390/nano15040307 |
[10] | Li, W., Liu, Y., Gao, Y., Ji, Z., Fu, Y., Zhao, C., et al. (2021) Tunneling-Assisted Highly Sensitive and Stable Lead-Free Cs3Bi2I9 Perovskite Photodetectors for Diffuse Reflection Imaging. Journal of Materials Chemistry C, 9, 1008-1013. https://doi.org/10.1039/d0tc04485g |
[11] | Mariyappan, P., Pandian, M.G.M., Chowdhury, T.H., Babu, S.M. and Subashchandran, S. (2023) Investigations on the Stability of the Ambient Processed Bismuth Based Lead-Free A3Bi2I9 (A = MA; Cs) Perovskite Thin-Films for Optoelectronic Applications. Materials Science and Engineering: B, 297, Article ID: 116706. https://doi.org/10.1016/j.mseb.2023.116706 |
[12] | Chang, J., Lin, Y. and Li, Y. (2024) Study of Vertical Phototransistors Based on Integration of Inorganic Transistors and Organic Photodiodes. Micromachines, 15, Article No. 1397. https://doi.org/10.3390/mi15111397 |
[13] | Kim, B.J., Park, S., Kim, T.Y., Jung, E.Y., Hong, J., Kim, B., et al. (2020) Improving the Photoresponsivity and Reducing the Persistent Photocurrent Effect of Visible-Light Zno/Quantum-Dot Phototransistors via a TiO2 Layer. Journal of Materials Chemistry C, 8, 16384-16391. https://doi.org/10.1039/d0tc03353g |
[14] | Sadhasivam, S., Gunasekaran, A., Anbarasan, N., Mukilan, M. and Jeganathan, K. (2020) Topotactic Transition of Pb0.99Bi0.01I2 into CH3NH3Pb0.99Bi0.01I3 on TiO2 for High-Performance Visible Light Perovskite Photodetector. Materials Letters, 276, Article ID: 128155. https://doi.org/10.1016/j.matlet.2020.128155 |
[15] | Adappattu Ramachandran, A., Krishnan, B., Avellaneda Avellaneda, D., Isabel Mendivil Palma, M., Amilcar Aguilar Martinez, J. and Shaji, S. (2021) Development of Lead-Free Cu2BiI5 Rudorffite Thin Films for Visible Light Photodetector Application. Applied Surface Science, 564, Article ID: 150438. https://doi.org/10.1016/j.apsusc.2021.150438 |
[16] | Yu, Y., Zhang, Y., Zhang, Z., Zhang, H., Song, X., Cao, M., et al. (2017) Broadband Phototransistor Based on CH3NH3PbI3 Perovskite and PbSe Quantum Dot Heterojunction. The Journal of Physical Chemistry Letters, 8, 445-451. https://doi.org/10.1021/acs.jpclett.6b02423 |
[17] | Gupta, S., Katiyar, A., Bhan, R. and Muralidharan, R. (2013) Design Optimization of Pixel Structure for α-Si Based Uncooled Infrared Detector. Defence Science Journal, 63, 581-588. https://doi.org/10.14429/dsj.63.5758 |