全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

职业本科教育中大模型应用的依赖困境与平衡范式研究
Research on the Dependency Dilemma and Balance Paradigm of Large Language Model Applications in Vocational Undergraduate Education

DOI: 10.12677/ve.2025.145228, PP. 291-297

Keywords: 职业本科教育,大模型应用,依赖困境,平衡范式
Vocational Undergraduate Education
, Large Language Model Applications, Dependent Dilemma, Balanced Paradigm

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文围绕职业本科教育中大模型应用面临的依赖困境,结合技术接受理论、教学设计理论与大模型应用平衡范式三个核心内容,构建了一个系统化职业教育改革框架。首先,本文通过技术接受理论解析职业本科师生对大模型的接受程度,为师生在教学实践面临的依赖困境提供科学理论基础。然后,本文从内容、目标、活动、资源四个方面优化了教学设计理论,提出解决大模型应用依赖困境的具体教学方法;最后,本文设计大模型应用平衡范式,通过对教师端的动态监测与对学生端的实时调控,避免师生对大模型的过度依赖,又促使学生保持其自主学习能力。本文理论对职业本科教育中大模型技术合理运用具有重要的指导意义。
This paper focuses on the dependency dilemma faced in the application of large language models in vocational undergraduate education. By integrating three core elements including technology acceptance theory, instructional design theory, and the balanced paradigm of large model application, the research constructs a systematic educational reform framework. First, the paper relies on the technology acceptance theory to analyze teachers’ and students’ acceptance attitudes toward large language model usage, which provides a cognitive foundation for dealing with the dependency dilemma in teaching practice. Then, the paper optimizes instructional design theory across four dimensions: content, goals, activities, and resources, which offers specific teaching methods to address the dependency dilemma arising from large model applications. Finally, the balanced paradigm of large language model applications is proposed to achieve dynamic monitoring on the teacher side and real-time regulation on the student side, which helps both teachers and students prevent over-reliance on large models, and encourages students to maintain their independent learning abilities. The theoretical framework in this paper provides significant guidance for the reasonable application of large language models in vocational undergraduate education.

References

[1]  朱永新. 深化职业教育改革-推进教育强国建设[J]. 教育与职业, 2024(8): 5-8.
[2]  贺蓉蓉. 论新建本科院校向职业本科院校的战略转型[J]. 教育与职业, 2014(17): 44-45.
[3]  张欢, 郑晨, 赵艳, 等. 在线学习场景下大语言模型辅助教学评测[J]. 现代教育技术, 2024, 34(11): 15-26.
[4]  周如俊. 生成式人工智能赋能职业教育教学变革: 主要维度与发展进路[J]. 当代职业教育, 2024(4): 22-31.
[5]  刘邦奇, 喻彦琨, 王涛, 等. 人工智能教育大模型: 体系架构与关键技术策略[J]. 开放教育研究, 2024, 30(5): 76-86.
[6]  何柏略, 刘衍峰. 通用大模型应用职业教育: 价值构想, 风险识别和优化治理[J]. 中国职业技术教育, 2024(28): 52-62.
[7]  吴河江, 吴砥. 教育领域通用大模型应用伦理风险的表征, 成因与治理[J]. 清华大学教育研究, 2024, 45(2): 33-41.
[8]  吴南中, 陈咸彰, 冯永. 从“失序”到“有序”: 生成式人工智能教育应用的转向及其生成机制[J]. 远程教育杂志, 2023, 41(6): 42-51.
[9]  Abdelhafiz, A.S., Farghly, M.I., Sultan, E.A., Abouelmagd, M.E., Ashmawy, Y. and Elsebaie, E.H. (2025) Medical Students and ChatGPT: Analyzing Attitudes, Practices, and Academic Perceptions. BMC Medical Education, 25, Article No. 187.
https://doi.org/10.1186/s12909-025-06731-9
[10]  Hasanein, A.M. and Sobaih, A.E.E. (2023) Drivers and Consequences of ChatGPT Use in Higher Education: Key Stakeholder Perspectives. European Journal of Investigation in Health, Psychology and Education, 13, 2599-2614.
https://doi.org/10.3390/ejihpe13110181
[11]  Davis, F.D. (1989) Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13, 319-340.
https://doi.org/10.2307/249008
[12]  Hamsa, B. and Osbert, B. (2024) Generative Ai Can Harm Learning. The Wharton School Research Paper, 7, 5-10.
https://ssrn.com/abstract=4895486
[13]  Abbas, M., Jam, F.A. and Khan, T.I. (2024) Is It Harmful or Helpful? Examining the Causes and Consequences of Generative AI Usage among University Students. International Journal of Educational Technology in Higher Education, 21, Article 10.
https://doi.org/10.1186/s41239-024-00444-7
[14]  Gagné, M.R. (1985) The Conditions of Learning and Theory of Instruction. Holt, Rinehart and Winston, 331-349.
https://unesdoc.unesco.org/ark:/48223/pf0000167421
[15]  Mishra, P. and Koehler, M.J. (2006) Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge. Teachers College Record: The Voice of Scholarship in Education, 108, 1017-1054.
https://doi.org/10.1177/016146810610800610
[16]  Floridi, L. and Cowls, J. (2022) A Unified Framework of Five Principles for AI in Society. In: Carta, S., Ed., Machine Learning and the City: Applications in Architecture and Urban Design, John Wiley & Sons Ltd, 535-545.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133