全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

GaAs缺陷态的低温光致发光和载流子弛豫动力学研究
Low Temperature Photoluminescence and Carrier Relaxation Dynamics of GaAs Defect States

DOI: 10.12677/ms.2025.155113, PP. 1082-1087

Keywords: 光致发光,GaAS反位缺陷,缺陷发光机制,载流子动力学
Photoluminescence
, GaAs Antisite Defects, Defect Luminescence Mechanism, Carrier Dynamics

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究是基于光致发光(Photoluminescence, PL)和瞬态反射(Transiet Reflection, TR)两种光谱技术,系统研究了GaAs晶体内部原生缺陷的类型及其对载流子动力学行为的影响机制。通过低温77 K下的PL光谱。识别出位于851 nm (GaAs)和924 nm ( Ga AS 2 )处的两个反位点缺陷特征发光峰,研究其并构建了相关的光学跃迁模型。进一步利用瞬态反射光谱研究了光激发下GaAs的超快载流子动力学行为。通过室温与低温实验对比,发现缺陷态会对光生载流子起到非辐射复合的作用,极大地改变了载流子的弛豫过程且缩短其寿命,并建立载流子弛豫路径的相应理论模型。该研究结果为揭示GaAs晶体缺陷发光机制以及载流子调控提供了实验依据,有助于深入理解半导体材料内部缺陷对器件性能和寿命的影响。
This study offers a comprehensive exploration of primary defects in GaAs crystals and their impact on carrier dynamics, employing Photoluminescence (PL) and Transient Reflection (TR) spectroscopy. At 77 K, PL spectroscopy reveals two antisite defect luminescence peaks at 851 nm (GaAs) and 924 nm ( Ga AS 2 ), with related optical transition models established. Transient reflection spectroscopy further examines GaAs carrier dynamics post-photoexcitation. Comparing room-temperature and 77 K experiments shows defect states act as non-radiative recombination centers for photogenerated carriers, altering carrier relaxation and reducing lifetimes. A theoretical model of carrier relaxation pathways is also presented. These results elucidate GaAs defect luminescence mechanisms and carrier regulation, enhancing understanding of how semiconductor material defects affect device performance and longevity.

References

[1]  Zhang, Z., Haggren, T., Li, J., Wang, J., Fang, Q., Tan, H.H., et al. (2023) High-Performance Flexible GaAs Nanofilm UV Photodetectors. ACS Applied Nano Materials, 6, 9917-9927.
https://doi.org/10.1021/acsanm.3c01875
[2]  Chae, H.U., Shrewsbury, B., Ahsan, R., Povinelli, M.L. and Kapadia, R. (2024) GaAs Mid-IR Electrically Tunable Metasurfaces. Nano Letters, 24, 2581-2588.
https://doi.org/10.1021/acs.nanolett.3c04687
[3]  Chadi, D.J. (1987) Atomic Structure of GaAs(100)-(2 × 1) and (2 × 4) Reconstructed Surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 5, 834-837.
https://doi.org/10.1116/1.574366
[4]  Hjort, M., Lehmann, S., Knutsson, J., Timm, R., Jacobsson, D., Lundgren, E., et al. (2013) Direct Imaging of Atomic Scale Structure and Electronic Properties of GaAs Wurtzite and Zinc Blende Nanowire Surfaces. Nano Letters, 13, 4492-4498.
https://doi.org/10.1021/nl402424x
[5]  Dugar, P., Kumar, M., T. C., S.K., Aggarwal, N. and Gupta, G. (2015) Carrier Relaxation Dynamics in Defect States of Epitaxial GaN/AlN/Si Using Ultrafast Transient Absorption Spectroscopy. RSC Advances, 5, 83969-83975.
https://doi.org/10.1039/c5ra10877b
[6]  Fukumoto, K., Yamada, Y., Koshihara, S. and Onda, K. (2015) Lifetimes of Photogenerated Electrons on a GaAs Surface Affected by Nanostructural Defects. Applied Physics Express, 8, Article ID: 101201.
https://doi.org/10.7567/apex.8.101201
[7]  Kapon, E., Tamargo, M.C. and Hwang, D.M. (1987) Molecular Beam Epitaxy of GaAs/AlGaAs Superlattice Heterostructures on Nonplanar Substrates. Applied Physics Letters, 50, 347-349.
https://doi.org/10.1063/1.98196
[8]  Ketterer, B., Heiss, M., Livrozet, M.J., Rudolph, A., Reiger, E. and Fontcuberta i Morral, A. (2011) Determination of the Band Gap and the Split-Off Band in Wurtzite GaAs Using Raman and Photoluminescence Excitation Spectroscopy. Physical Review B, 83, Article ID: 125307.
https://doi.org/10.1103/physrevb.83.125307
[9]  Kusch, P., Breuer, S., Ramsteiner, M., Geelhaar, L., Riechert, H. and Reich, S. (2012) Band Gap of Wurtzite GaAs: A Resonant Raman Study. Physical Review B, 86, Article ID: 075317.
https://doi.org/10.1103/physrevb.86.075317
[10]  Huang, J., Shang, L., Ma, S., Han, B., Wei, G., Liu, Q., et al. (2020) Low Temperature Photoluminescence Study of GaAs Defect States. Chinese Physics B, 29, Article ID: 010703.
https://doi.org/10.1088/1674-1056/ab5fb8
[11]  Suezawa, M. and Sumino, K. (1994) Optical Excitation and Thermal Recovery of the 78 meV/203 meV Acceptors in GaAs. Journal of Applied Physics, 76, 932-941.
https://doi.org/10.1063/1.357771
[12]  Du, Y.A., Sakong, S. and Kratzer, P. (2013) As Vacancies, Ga Antisites, and Au Impurities in Zinc Blende and Wurtzite GaAs Nanowire Segments from First Principles. Physical Review B, 87, Article ID: 075308.
https://doi.org/10.1103/physrevb.87.075308
[13]  Escaño, M.C., Balgos, M.H., Nguyen, T.Q., Prieto, E.A., Estacio, E., Salvador, A., et al. (2020) True Bulk As-Antisite Defect in GaAs(110) Identified by DFT Calculations and Probed by STM/STS Measurements. Applied Surface Science, 511, Article ID: 145590.
https://doi.org/10.1016/j.apsusc.2020.145590
[14]  Singh, C.N., Uberuaga, B.P., Tobin, S.J. and Liu, X. (2023) Impact of Radiation-Induced Point Defects on Thermal Carrier Decay Processes in GaAs. Acta Materialia, 242, Article ID: 118480.
https://doi.org/10.1016/j.actamat.2022.118480
[15]  Schultz, P.A. (2016) Discriminating a Deep Gallium Antisite Defect from Shallow Acceptors in GaAs Using Supercell Calculations. Physical Review B, 93, Article ID: 125201.
https://doi.org/10.1103/physrevb.93.125201
[16]  Di Cicco, A., Polzoni, G., Gunnella, R., Trapananti, A., Minicucci, M., Rezvani, S.J., et al. (2020) Broadband Optical Ultrafast Reflectivity of Si, Ge and GaAs. Scientific Reports, 10, Article No. 17363.
https://doi.org/10.1038/s41598-020-74068-y
[17]  Panahandeh-Fard, M., Yin, J., Kurniawan, M., Wang, Z., Leung, G., Sum, T.C., et al. (2014) Ambipolar Charge Photogeneration and Transfer at GaAs/P3HT Heterointerfaces. The Journal of Physical Chemistry Letters, 5, 1144-1150.
https://doi.org/10.1021/jz500332z
[18]  Deng, G., Qian, Y. and Rao, Y. (2019) Development of Ultrafast Broadband Electronic Sum Frequency Generation for Charge Dynamics at Surfaces and Interfaces. The Journal of Chemical Physics, 150, Article ID: 024708.
https://doi.org/10.1063/1.5063458
[19]  Prabhakar, R.R., Moehl, T., Friedrich, D., Kunst, M., Shukla, S., Adeleye, D., et al. (2022) Sulfur Treatment Passivates Bulk Defects in Sb2Se3 Photocathodes for Water Splitting. Advanced Functional Materials, 32, Article ID: 2112184.
https://doi.org/10.1002/adfm.202112184
[20]  Zaumseil, J. (2021) Luminescent Defects in Single‐Walled Carbon Nanotubes for Applications. Advanced Optical Materials, 10, Article ID: 2101576.
https://doi.org/10.1002/adom.202101576

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133