全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

带混合色散项的非线性薛定谔方程归一化驻波解的存在性
Existence of Normalized Standing Waves for a Nonlinear Schr?dinger Equation with Mixed Dispersion

DOI: 10.12677/pm.2025.155168, PP. 194-202

Keywords: 归一化解,基态,非线性薛定谔方程
Normalized Solution
, Ground State, Nonlinear Schr?dinger Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了带混合色散项的非线性薛定谔方程归一化驻波解的存在性结果,证明了三维情况下方程基态解的存在性。主要研究方法是基于极小极大方法和集中紧性原理。
In this paper, we study the existence of normalized standing wave solutions for a nonlinear Schr?dinger equation with mixed dispersion, and prove the existence of ground state solutions in the three-dimensional case. The main analytical approaches are based on the minimax approach and Concentration-compactness Lemma.

References

[1]  Karpman, V.I. (1996) Stabilization of Soliton Instabilities by Higher Order Dispersion: KdV-Type Equations. Physics Letters A, 210, 77-84.
https://doi.org/10.1016/0375-9601(95)00752-0
[2]  Karpman, V.I. and Shagalov, A.G. (2000) Stability of Solitons Described by Nonlinear Schrödinger-Type Equations with Higher-Order Dispersion. Physica D: Nonlinear Phenomena, 144, 194-210.
https://doi.org/10.1016/s0167-2789(00)00078-6
[3]  Bonheure, D., Casteras, J., Gou, T. and Jeanjean, L. (2019) Normalized Solutions to the Mixed Dispersion Nonlinear Schrödinger Equation in the Mass Critical and Supercritical Regime. Transactions of the American Mathematical Society, 372, 2167-2212.
https://doi.org/10.1090/tran/7769
[4]  Jeanjean, L. (1997) Existence of Solutions with Prescribed Norm for Semilinear Elliptic Equations. Nonlinear Analysis: Theory, Methods & Applications, 28, 1633-1659.
https://doi.org/10.1016/s0362-546x(96)00021-1
[5]  Ambrosetti, A. and Malchiodi, A. (2009) Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge University Press.
[6]  Derrick, G.H. (1964) Comments on Nonlinear Wave Equations as Models for Elementary Particles. Journal of Mathematical Physics, 5, 1252-1254.
https://doi.org/10.1063/1.1704233
[7]  Pohožaev, S.I. (1965) On the Eigenfunctions of the Equation. Doklady Akademii Nauk, 165, 36-39.
[8]  Bonheure, D., Castéras, J., Gou, T. and Jeanjean, L. (2017) Strong Instability of Ground States to a Fourth Order Schrödinger Equation. International Mathematics Research Notices, 2019, 5299-5315.
https://doi.org/10.1093/imrn/rnx273
[9]  d’Avenia, P., Pomponio, A. and Schino, J. (2023) Radial and Non-Radial Multiple Solutions to a General Mixed Dispersion NLS Equation. Nonlinearity, 36, 1743-1775.
https://doi.org/10.1088/1361-6544/acb62d
[10]  Ghoussoub, N. (1993) Duality and Perturbation Methods in Critical Point Theory. Cambridge University Press.
https://doi.org/10.1017/cbo9780511551703
[11]  Ghoussoub, N. and Preiss, D. (1989) A General Mountain Pass Principle for Locating and Classifying Critical Points. Annales de lInstitut Henri Poincaré C, Analyse non linéaire, 6, 321-330.
https://doi.org/10.1016/s0294-1449(16)30313-4
[12]  Bellazzini, J., Forcella, L. and Georgiev, V. (2023) Ground State Energy Threshold and Blow-Up for NLS with Competing Nonlinearities. Annali Scuola Normale SuperioreClasse di Scienze, 24, 955-988.
https://doi.org/10.2422/2036-2145.202005_044
[13]  Lions, P.L. (1984) The Concentration-Compactness Principle in the Calculus of Variations. the Locally Compact Case, Part 2. Annales de lInstitut Henri Poincaré C, Analyse non linéaire, 1, 223-283.
https://doi.org/10.1016/s0294-1449(16)30422-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133