|
基于拉曼、光致发光以及XRD技术的FAPbI3钙钛矿相变研究综述
|
Abstract:
甲脒碘化铅(FAPbI3)钙钛矿因其在光电领域的潜在应用而备受关注,然而其在室温下极易发生相变转变为δ相,其结构、发光性质等与α相差异明显,严重制约了它的实际应用。因此,深入研究FAPbI3的相变机制及其光学性质的温度依赖性对于提高材料的稳定性和实际应用具有重要意义。本文综述了近年来关于FAPbI3相变的研究进展,总结了不同相的晶格振动特性、光学性质以及晶体结构特点,并对未来研究方向进行了展望,旨在为深入理解FAPbI3钙钛矿相变机制和实现其在光电领域的实际应用提供参考。
Formamidine lead iodide (FAPbI3) perovskite has attracted much attention due to its potential applications in the field of optoelectronics. However, it is very easy to phase transformation to the δ phase at room temperature, and its structure and luminescence properties are obviously different from those of α phase, which severely restricts its practical application. Therefore, in-depth research on the phase transition mechanism of FAPbI3 and the temperature dependence of its optical properties is of great significance for improving the material’s stability and practical application. This paper reviews the research progress on the phase transition of FAPbI3 in recent years, summarizes the lattice vibration characteristics, optical properties, and crystal structure features of different phases, and looks forward to future research directions, aiming to provide a reference for a deeper understanding of the phase transition mechanism of FAPbI3 perovskite and its practical application in the field of optoelectronics.
[1] | Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051. https://doi.org/10.1021/ja809598r |
[2] | Lin, K., Xing, J., Quan, L.N., de Arquer, F.P.G., Gong, X., Lu, J., et al. (2018) Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 20 per Cent. Nature, 562, 245-248. https://doi.org/10.1038/s41586-018-0575-3 |
[3] | Yu, W., Li, F., Yu, L., Niazi, M.R., Zou, Y., Corzo, D., et al. (2018) Single Crystal Hybrid Perovskite Field-Effect Transistors. Nature Communications, 9, Article No. 5354. https://doi.org/10.1038/s41467-018-07706-9 |
[4] | Li, L., Ye, S., Qu, J., Zhou, F., Song, J. and Shen, G. (2021) Recent Advances in Perovskite Photodetectors for Image Sensing. Small, 17, Article ID: 2005606. https://doi.org/10.1002/smll.202005606 |
[5] | Cordero, F., Craciun, F., Paoletti, A.M. and Zanotti, G. (2021) Structural Transitions and Stability of FAPbI3 and MAPbI3: The Role of Interstitial Water. Nanomaterials, 11, Article 1610. https://doi.org/10.3390/nano11061610 |
[6] | Maeng, I., Lee, S., Han, E.Q., Zhang, Y., Oh, S.J., Nakamura, M., et al. (2021) Unusual Terahertz-Wave Absorptions in δ/α-Mixed-Phase FAPbI3 Single Crystals: Interfacial Phonon Vibration Modes. NPG Asia Materials, 13, Article No. 75. https://doi.org/10.1038/s41427-021-00343-7 |
[7] | Sun, Q., Kong, W., Zhang, C. and Yang, X. (2021) Phase Transition Stability of Formamidine (FA)-Basedperovskite Films. Scientia Sinica Physica, Mechanica & Astronomica, 51, Article ID: 087311. https://doi.org/10.1360/sspma-2020-0490 |
[8] | Chen, T. (2023) Inhibition of Defect-Induced α-to-δ Phase Transition for Ecient and Stable Formamidinium Perovskite Solar Cells. https://doi.org/10.21203/rs.3.rs-3065194/v1 |
[9] | Driscoll, E.H., Orera, A., Anderson, P.A., Sanjuán, M.L. and Slater, P.R. (2021) Raman Spectroscopy Insights into the α-and δ-Phases of Formamidinium Lead Iodide (FAPbI3). Dalton Transactions, 50, 3315-3323. https://doi.org/10.1039/d0dt04300a |
[10] | Jiang, Y., Xu, T., Du, H., Rothmann, M.U., Yin, Z., Yuan, Y., et al. (2023) Organic-Inorganic Hybrid Nature Enables Efficient and Stable CsPbI3-Based Perovskite Solar Cells. Joule, 7, 2905-2922. https://doi.org/10.1016/j.joule.2023.10.019 |
[11] | Li, X., et al. (2024) Bifunctional Ligand-Induced Preferred Crystal Orientation Enables Highly Efficient Perovskite Solar Cells. Joule, 8, 3169-3185. |
[12] | Divitini, G., Cacovich, S., Matteocci, F., Cinà, L., Di Carlo, A. and Ducati, C. (2016) In Situ Observation of Heat-Induced Degradation of Perovskite Solar Cells. Nature Energy, 1, Article No. 15012. https://doi.org/10.1038/nenergy.2015.12 |
[13] | Sturdza, B.K., Gallant, B.M., Holzhey, P., Duijnstee, E.A., von der Leyen, M.W., Sansom, H.C., et al. (2024) Direct Observation of Phase Transitions between Delta-and α-Phase FAPbI3 via Defocused Raman Spectroscopy. Journal of Materials Chemistry A, 12, 5406-5413. https://doi.org/10.1039/d3ta06411e |
[14] | Francisco-López, A., Charles, B., Alonso, M.I., Garriga, M., Campoy-Quiles, M., Weller, M.T., et al. (2020) Phase Diagram of Methylammonium/Formamidinium Lead Iodide Perovskite Solid Solutions from Temperature-Dependent Photoluminescence and Raman Spectroscopies. The Journal of Physical Chemistry C, 124, 3448-3458. https://doi.org/10.1021/acs.jpcc.9b10185 |
[15] | Qin, L., Zhu, M., Xia, Y., Ma, X., Hong, D., Tian, Y., et al. (2024) Multifunctional Dual-Anion Compensation of Amphoteric Glycine Hydrochloride Enabled Highly Stable Perovskite Solar Cells with Prolonged Carrier Lifetime. Nano Research, 17, 5131-5137. https://doi.org/10.1007/s12274-024-6428-5 |
[16] | Chen, T., Foley, B.J., Park, C., Brown, C.M., Harriger, L.W., Lee, J., et al. (2016) Entropy-Driven Structural Transition and Kinetic Trapping in Formamidinium Lead Iodide Perovskite. Science Advances, 2, e1601650. https://doi.org/10.1126/sciadv.1601650 |
[17] | Ibaceta-Jaña, J., Muydinov, R., Rosado, P., Mirhosseini, H., Chugh, M., Nazarenko, O., et al. (2020) Vibrational Dynamics in Lead Halide Hybrid Perovskites Investigated by Raman Spectroscopy. Physical Chemistry Chemical Physics, 22, 5604-5614. https://doi.org/10.1039/c9cp06568g |
[18] | Shao, J., Chen, X., Wang, M. and Lu, W. (2025) Infrared-modulated Photoluminescence Spectroscopy: From Wide-Band Coverage to Micro-Area and High-Throughput Scanning Imaging. Acta Physica Sinica, 74, Article ID: 017801. https://doi.org/10.7498/aps.74.20241491 |
[19] | Post, J.E. and Veblen, D.R.J.A.M. (1990) Crystal Structure Determinations of Synthetic Sodium, Magnesium, and Potassium Birnessite Using TEM and the Rietveld Method. American Mineralogist, 75, 477-489. |
[20] | Ruan, S., McMeekin, D.P., Fan, R., Webster, N.A.S., Ebendorff-Heidepriem, H., Cheng, Y., et al. (2020) Raman Spectroscopy of Formamidinium-Based Lead Halide Perovskite Single Crystals. The Journal of Physical Chemistry C, 124, 2265-2272. https://doi.org/10.1021/acs.jpcc.9b08917 |
[21] | Malevu, T.D., Mwankemwa, B.S., Tshabalala, K.G. and Ocaya, R.O. (2020) Effect of Annealing on the Efficiency of Ambient-Atmosphere Fabricated MAPbI3 Perovskite Solar Cells. Scientific African, 8, e00447. https://doi.org/10.1016/j.sciaf.2020.e00447 |
[22] | Burschka, J., Pellet, N., Moon, S., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., et al. (2013) Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature, 499, 316-319. https://doi.org/10.1038/nature12340 |
[23] | Ibaceta-Jaña, J., Muydinov, R., Rosado, P., Vinoth Kumar, S.H.B., Gunder, R., Hoffmann, A., et al. (2021) Hidden Polymorphism of FAPbI3 Discovered by Raman Spectroscopy. Physical Chemistry Chemical Physics, 23, 9476-9482. https://doi.org/10.1039/d1cp00102g |
[24] | Wang, J., Shen, W., Hu, J., Chen, J., Li, X. and Zeng, H. (2020) Mechanisms and Applications of Laser Action on Lead Halide Perovskites. Acta Physico Chimica Sinica, 37, Article ID: 2008051. https://doi.org/10.3866/pku.whxb202008051 |
[25] | Fang, H., Wang, F., Adjokatse, S., Zhao, N., Even, J. and Antonietta Loi, M. (2015) Photoexcitation Dynamics in Solution-Processed Formamidinium Lead Iodide Perovskite Thin Films for Solar Cell Applications. Light: Science & Applications, 5, e16056. https://doi.org/10.1038/lsa.2016.56 |
[26] | Zhu, Z., Mao, K., Zhang, K., Peng, W., Zhang, J., Meng, H., et al. (2022) Correlating the Perovskite/Polymer Multi-Mode Reactions with Deep-Level Traps in Perovskite Solar Cells. Joule, 6, 2849-2868. https://doi.org/10.1016/j.joule.2022.10.007 |
[27] | Steele, J.A., Yuan, H., Tan, C.Y.X., Keshavarz, M., Steuwe, C., Roeffaers, M.B.J., et al. (2017) Direct Laser Writing of δ-to α-Phase Transformation in Formamidinium Lead Iodide. ACS Nano, 11, 8072-8083. https://doi.org/10.1021/acsnano.7b02777 |
[28] | Yan, K., Long, M., Zhang, T., Wei, Z., Chen, H., Yang, S., et al. (2015) Hybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering behind Device Processing for High Efficiency. Journal of the American Chemical Society, 137, 4460-4468. https://doi.org/10.1021/jacs.5b00321 |
[29] | Fang, H., Wang, F., Adjokatse, S., Zhao, N. and Loi, M.A. (2016) Photoluminescence Enhancement in Formamidinium Lead Iodide Thin Films. Advanced Functional Materials, 26, 4653-4659. https://doi.org/10.1002/adfm.201600715 |
[30] | Choi, M., Kim, Y., Lim, H., Alarousu, E., Adhikari, A., Shaheen, B.S., et al. (2019) Quantum‐Dot Solar Cells: Tuning Solute‐Redistribution Dynamics for Scalable Fabrication of Colloidal Quantum‐Dot Optoelectronics (Adv. Mater. 32/2019). Advanced Materials, 31, Article ID: 1970225. https://doi.org/10.1002/adma.201970225 |
[31] | Fang, H., Protesescu, L., Balazs, D.M., Adjokatse, S., Kovalenko, M.V. and Loi, M.A. (2017) Exciton Recombination in Formamidinium Lead Triiodide: Nanocrystals versus Thin Films. Small, 13, Article ID: 1700673. https://doi.org/10.1002/smll.201700673 |
[32] | Tan, M., Chen, B., Zhang, Y., Ni, M., Wang, W., Zhang, H., et al. (2020) Temperature-Dependent Dynamic Carrier Process of FAPbI3 Nanocrystals’ Film. The Journal of Physical Chemistry C, 124, 5093-5098. https://doi.org/10.1021/acs.jpcc.0c01138 |
[33] | Yang, J., et al. (2025) Enhanced Near‐Infrared Amplified Spontaneous Emission and Stability Improvement of Air‐Processed Pure Black‐Phase Formamidinium Lead Iodide Perovskite Films. Advanced Functional Materials. |
[34] | Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., et al. (2015) Compositional Engineering of Perovskite Materials for High-Performance Solar Cells. Nature, 517, 476-480. https://doi.org/10.1038/nature14133 |