全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于渐变宽度石墨烯纳米带阵列的太赫兹宽带滤波器
Terahertz Broadband Filter Based on Gradient Width Graphene Nanoribbon Arrays

DOI: 10.12677/japc.2025.142031, PP. 335-342

Keywords: 石墨烯纳米带,太赫兹滤波器,等离激元
Graphene Nanoribbons
, Terahertz Filter, Plasmon

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究探讨了一种利用梯度化的石墨烯纳米带阵列所构建的太赫兹滤波装置。通过COMSOL Multiphysics? 6.1全波仿真平台,建立了双层异质结构模型:顶层由宽度渐变(0.5~0.7 μm)的石墨烯纳米带阵列组成,而底部采用SiO2介质层支撑。研究揭示,纳米带宽度梯度变化可诱导等离激元共振频率产生0.77 THz的偏移,通过阵列协同效应形成1.18 THz的宽带吸收。仿真结果表明,该组件比起均匀光栅带宽拓展了90%。这一发现不仅展示了梯度化石墨烯纳米带阵列在太赫兹滤波领域的卓越性能,也为未来太赫兹技术的发展提供了新的可能性。我们期待这项研究能够为相关领域的应用带来实质性的突破,推动太赫兹技术的进一步发展和普及。
In this study, a terahertz filter device based on a gradient graphene nanoribbon array was developed. Using the COMSOL Multiphysics? 6.1 full-wave simulation platform, a two-layer heterostructure model was constructed: the top layer consisted of a graphene nanoribbon array with a gradient width (0.5~0.7 μm), while the bottom layer was supported by a SiO2 dielectric layer. It is revealed that the change of nanoribbon width gradient can induce a shift of 0.77 THz in the resonant frequency of plasmon, and a wide band passband of 1.18 THz is formed through the array synergy effect. Simulation results show that the bandwidth of this component is 90% larger than that of uniform grating. This discovery not only demonstrates the excellent performance of gradient fossil ink nanoribbon arrays in the field of terahertz filtering, but also provides new possibilities for the development of terahertz technology in the future. We expect that this research will bring substantial breakthroughs in the application of related fields and promote the further development and popularization of terahertz technology.

References

[1]  Nagatsuma, T., Ducournau, G. and Renaud, C.C. (2016) Advances in Terahertz Communications Accelerated by Photonics. Nature Photonics, 10, 371-379.
https://doi.org/10.1038/nphoton.2016.65
[2]  Tonouchi, M. (2007) Cutting-Edge Terahertz Technology. Nature Photonics, 1, 97-105.
https://doi.org/10.1038/nphoton.2007.3
[3]  Zhang, H., Zhang, L. and Yu, X. (2021) Terahertz Band: Lighting up Next-Generation Wireless Communications. China Communications, 18, 153-174.
https://doi.org/10.23919/jcc.2021.05.010
[4]  Yang, X., Zhao, X., Yang, K., Liu, Y., Liu, Y., Fu, W., et al. (2016) Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends in Biotechnology, 34, 810-824.
https://doi.org/10.1016/j.tibtech.2016.04.008
[5]  Federici, J.F., Schulkin, B., Huang, F., Gary, D., Barat, R., Oliveira, F., et al. (2005) Thz Imaging and Sensing for Security Applications—Explosives, Weapons and Drugs. Semiconductor Science and Technology, 20, S266-S280.
https://doi.org/10.1088/0268-1242/20/7/018
[6]  Song, H. and Nagatsuma, T. (2011) Present and Future of Terahertz Communications. IEEE Transactions on Terahertz Science and Technology, 1, 256-263.
https://doi.org/10.1109/tthz.2011.2159552
[7]  Wang, G., Zhang, X. and Wei, X. (2020) Tunable Plasmon-Induced Transparency through Bright Mode Resonator in a Metal-Graphene Terahertz Metamaterial. Applied Sciences, 10, Article 5550.
https://doi.org/10.3390/app10165550
[8]  Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., et al. (2011) Graphene Plasmonics for Tunable Terahertz Metamaterials. Nature Nanotechnology, 6, 630-634.
https://doi.org/10.1038/nnano.2011.146
[9]  Ma, G., Li, X., Hu, F., Deng, T., Li, L., Gao, C., et al. (2024) A Novel Multilayer Broadband Terahertz Metamaterial Absorber Based on Three-Dimensional Printing and Microfluidics Technologies. IEEE Transactions on Terahertz Science and Technology, 14, 484-494.
https://doi.org/10.1109/tthz.2024.3405168
[10]  Fu, P., Liu, F., Ren, G.J., Su, F., Li, D. and Yao, J.Q. (2018) A Broadband Metamaterial Absorber Based on Multi-Layer Graphene in the Terahertz Region. Optics Communications, 417, 62-66.
https://doi.org/10.1016/j.optcom.2018.02.034
[11]  Low, T. and Avouris, P. (2014) Graphene Plasmonics for Terahertz to Mid-Infrared Applications. ACS Nano, 8, 1086-1101.
https://doi.org/10.1021/nn406627u
[12]  Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009) The Electronic Properties of Graphene. Reviews of Modern Physics, 81, 109-162.
https://doi.org/10.1103/revmodphys.81.109
[13]  邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态[J]. 物理学报, 2013, 62(8): 441-448.
[14]  Gonçalves, P.A.D., Christensen, T., Rivera, N., Jauho, A., Mortensen, N.A. and Soljačić, M. (2020) Plasmon-Emitter Interactions at the Nanoscale. Nature Communications, 11, Article No. 366.
https://doi.org/10.1038/s41467-019-13820-z

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133