|
空心立方CoFe普鲁士蓝作为高循环性能水系铵离子电池正极材料
|
Abstract:
水系铵离子电池作为一种新兴的电化学储能技术,由于其低成本、高安全性和环境友好性,受到了广泛的关注。本文对普鲁士蓝类似物进行了纳米化改性处理,成功制备了具有优异循环性能和高倍率性能的水系铵离子电池正极材料。采用液相沉淀法合成了CoFePBA材料,并通过正交实验确定了最优的电极材料制备条件。在优化实验方案后,极差分析表明,在最优制备条件下得到的CoFePBA电极在1 A·g?1的电流密度下循环20,000次后,电极仍能保持78%的初始容量,表现出卓越的循环稳定性,同时在0.1 A·g?1的电流密度下展现出55.4 mAh·g?1的高容量。红外光谱测试进一步验证了CoFePBA电极在嵌铵和脱铵过程中具有良好的电化学可逆性。
Aqueous ammonium ion batteries, as an emerging electrochemical energy storage technology, have attracted considerable attention due to their low cost, high safety, and environmental friendliness. In this study, Prussian blue analogs were subjected to nanomization and other modification treatments to successfully prepare high-performance cathode materials for aqueous ammonium ion batteries with excellent cycling and rate performance. CoFePBA materials were synthesized via a liquid-phase precipitation method, and the optimal preparation conditions for the electrode materials were determined through orthogonal experiments. After optimizing the experimental protocol, range analysis revealed that the CoFePBA electrode prepared under the optimal conditions exhibited a high capacity of 55.4 mAh·g?1 at 0.1 A·g?1. Moreover, after 20,000 cycles at 1 A·g?1, the electrode retained 78% of its initial capacity, demonstrating excellent cycling stability. Infrared spectroscopy further confirmed that the CoFePBA electrode exhibited good electrochemical reversibility during the intercalation and de-intercalation of ammonium ions.
[1] | Zou, J., Fan, K., Wang, X., Chen, Y., Cao, Y., Dai, H., et al. (2023) A Hexaazatriphenylene-Based Polymer as High Performance Anode for Li-/Na-/K-Ion Batteries. Chemical Engineering Journal, 460, Article 141703. https://doi.org/10.1016/j.cej.2023.141703 |
[2] | 鲁航语, 侯瑞林, 褚世勇, 周豪慎, 郭少华. 高比能锂离子电池层状富锂正极材料改性策略研究进展[J]. 物理化学学报, 2023, 39(7): 68-84. |
[3] | Yabuuchi, N., Kubota, K., Dahbi, M. and Komaba, S. (2014) Research Development on Sodium-Ion Batteries. Chemical Reviews, 114, 11636-11682. https://doi.org/10.1021/cr500192f |
[4] | Dong, S., Shin, W., Jiang, H., Wu, X., Li, Z., Holoubek, J., et al. (2019) Ultra-Fast NH4+ Storage: Strong H Bonding between NH4+ and Bi-Layered V2O5. Chem, 5, 1537-1551. https://doi.org/10.1016/j.chempr.2019.03.009 |
[5] | Han, J., Varzi, A. and Passerini, S. (2022) The Emergence of Aqueous Ammonium‐Ion Batteries. Angewandte Chemie, 134, e202115046. https://doi.org/10.1002/ange.202115046 |
[6] | Zhang, F., Zhang, W., Wexler, D. and Guo, Z. (2022) Recent Progress and Future Advances on Aqueous Monovalent‐ion Batteries Towards Safe and High‐Power Energy Storage. Advanced Materials, 34, Article 2107965. https://doi.org/10.1002/adma.202107965 |
[7] | 詹世英, 于东旭, 陈楠, 杜飞. 非金属阳离子水系二次电池研究进展[J]. 储能科学与技术, 2021, 10(6): 2144-2155. |
[8] | Grandjean, F., Samain, L. and Long, G.J. (2016) Characterization and Utilization of Prussian Blue and Its Pigments. Dalton Transactions, 45, 18018-18044. https://doi.org/10.1039/c6dt03351b |
[9] | Zhou, L., Yang, Z., Li, C., Chen, B., Wang, Y., Fu, L., et al. (2016) Prussian Blue as Positive Electrode Material for Aqueous Sodium-Ion Capacitor with Excellent Performance. RSC Advances, 6, 109340-109345. https://doi.org/10.1039/c6ra21500a |
[10] | Li, C., Yan, W., Liang, S., Wang, P., Wang, J., Fu, L., et al. (2019) Achieving a High-Performance Prussian Blue Analogue Cathode with an Ultra-Stable Redox Reaction for Ammonium Ion Storage. Nanoscale Horizons, 4, 991-998. https://doi.org/10.1039/c8nh00484f |
[11] | Ruan, Y., Chen, L., Cui, L. and An, Q. (2022) PPy-Modified Prussian Blue Cathode Materials for Low-Cost and Cycling-Stable Aqueous Zinc-Based Hybrid Battery. Coatings, 12, Article 779. https://doi.org/10.3390/coatings12060779 |
[12] | Huang, G., Lao, Z., He, Z., Xiong, F., Tan, S., Huang, M., et al. (2023) Mg-Substituted Prussian Blue as a Low-Strain Cathode Material for Aqueous Fe-Ion Batteries. Chemical Communications, 59, 4067-4070. https://doi.org/10.1039/d2cc06885k |
[13] | Zhang, X., Hong, Y., Zhang, T., Ma, X., Wei, Y., Zi, Z., et al. (2024) Toward High-Energy and Long-Cycle-Life Prussian Blue-Based Aqueous Sodium-Ion Batteries. ACS Applied Nano Materials, 8, 733-740. https://doi.org/10.1021/acsanm.4c06180 |
[14] | Zeng, Y., Lu, X.F., Zhang, S.L., Luan, D., Li, S. and Lou, X.W. (2021) Construction of Co-Mn Prussian Blue Analog Hollow Spheres for Efficient Aqueous Zn‐ion Batteries. Angewandte Chemie International Edition, 60, 22189-22194. https://doi.org/10.1002/anie.202107697 |
[15] | Jiang, X., Hu, F., Wang, W., Qiu, J. and Zheng, X. (2019) Hierarchical Polyhedron K2CoFe(CN)6 as Promising Cathode for Rechargeable Batteries. Journal of Alloys and Compounds, 774, 315-320. https://doi.org/10.1016/j.jallcom.2018.09.314 |
[16] | Ni, G., Sun, M., Hao, Z., Zou, G., Cao, F., Qin, L., et al. (2023) Binary Solvents Assisting the Long-Term Stability of Aqueous K/Zn Hybrid Batteries. Materials Today Energy, 31, Article 101204. https://doi.org/10.1016/j.mtener.2022.101204 |
[17] | Xiang, J., Hao, Y., Gao, Y., Ji, L., Wang, L., Sun, G., et al. (2023) Tailoring the Growth of Iron Hexacyanoferrates for High-Performance Cathode of Sodium-Ion Batteries. Journal of Alloys and Compounds, 946, Article 169284. https://doi.org/10.1016/j.jallcom.2023.169284 |
[18] | Yi, T.-F., Qu, J.-P., Lai, X., Han, X., Chang, H. and Zhu, Y.-R. (2021) Toward High-Performance Li Storage Anodes: Design and Construction of Spherical Carbon-Coated CoNiO2 Materials. Materials Today Chemistry, 19, Article 100407. https://doi.org/10.1016/j.mtchem.2020.100407 |
[19] | 陈晓宇, 耿萌萌, 王乾坤, 沈佳妮, 贺益君, 马紫峰. 基于电化学阻抗特征选择和高斯过程回归的锂离子电池健康状态估计方法[J]. 储能科学与技术, 2022, 11(9): 2995-3002. |
[20] | Das, S.R., Majumder, S.B. and Katiyar, R.S. (2005) Kinetic Analysis of the Li+ Ion Intercalation Behavior of Solution Derived Nano-Crystalline Lithium Manganate Thin Films. Journal of Power Sources, 139, 261-268. https://doi.org/10.1016/j.jpowsour.2004.06.056 |
[21] | Xi, Y. and Lu, Y. (2021) Facile Synthesis and Cycling Performance Maintenance of Iron Hexacyanoferrate Cathode for Sodium-Ion Battery. Journal of Power Sources, 513, Article 230554. https://doi.org/10.1016/j.jpowsour.2021.230554 |