全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

厨余沼渣与物流垃圾混合燃烧特性研究
Co-Combustion Performance of Food Wastes-Derived Anerobic Digestates and Waste Logistics Packaging

DOI: 10.12677/japc.2025.142026, PP. 274-284

Keywords: 聚乙烯,纸板,交互作用,动力学,混合燃烧
Polyethylene
, Cardboard, Interaction, Dynamics, Co-Combustion

Full-Text   Cite this paper   Add to My Lib

Abstract:

厌氧消化是厨余垃圾处置的有效方法,但面临沼渣消纳不畅的问题,目前主要以掺烧为主。沼渣含水率高、灰分高、热值低,易出现燃烧不稳定及结焦结渣问题。快递服务业的快速发展产生大量纸板和聚乙烯等快递物流垃圾,回收价值低,但热值高。因此,厨余沼渣与快递物流垃圾混合燃烧是实现其能源化利用的重要方式。采用热重分析仪研究了沼渣和物流垃圾的混合燃烧特性和燃烧动力学。结果表明:添加纸板和聚乙烯可以改善沼渣燃烧特性,综合燃烧指数(CCI)是沼渣单独燃烧的8.3倍。纸板还能提高燃烧稳定指数Csi,纸板添加比为30%时,Csi是沼渣单独燃烧的7.75倍,聚乙烯添加比超过20%会导致燃尽温度提高约30℃。动力学计算表明,沼渣和纸板能降低挥发分燃烧活化能,而聚乙烯则提高了反应指前因子,加速反应进行。沼渣、纸板和聚乙烯混合燃烧可以获得较好的燃烧特性,可为城市有机固废协同处置提供理论参考。
Anaerobic digestion (AD) is an effective method for treating food waste; however, the disposal of digestate remains a challenge, with co-combustion being the primary approach. Digestate has a high moisture content, high ash content, and low calorific value, making combustion unstable and prone to slagging and fouling. The rapid development of the express delivery industry has generated a large amount of low-value but high-calorific waste logistics packaging, primarily comprising cardboard (CB) and polyethylene (PE). The co-combustion of AD with waste logistics packaging holds significant potential as an efficient energy recovery strategy. In this study, thermogravimetric analysis (TGA) was employed to investigate the co-combustion characteristics, combustion kinetics. The results showed that adding CB and PE improved the combustion performance of digestate, with the comprehensive combustion index (CCI) being 8.3 times higher than that of digestate alone. CB also enhanced the combustion stability index (Csi), and at a 30% cardboard addition, Csi was 7.75 times higher than that of digestate alone. However, when the polyethylene ratio exceeded 20%, the burnout temperature increased by approximately 30?C. Kinetic calculations revealed that digestate and cardboard reduced the activation energy of volatile matter combustion, while polyethylene increased the pre-exponential factor, accelerating the reaction. The blends of AD, CB, and PE have good combustion characteristics, this research providing reference for the collaborative disposal of food wastes-derived anerobic digestates and waste logistics packaging.

References

[1]  邹骑鸿, 余昭胜, 韦琛, 等. 厨余沼渣与城市生活垃圾混合燃烧过程的灰熔融特性[J]. 环境工程, 2023, 41(5): 69-74, 178.
[2]  Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q., et al. (2018) A Comprehensive Review on Food Waste Anaerobic Digestion: Research Updates and Tendencies. Bioresource Technology, 247, 1069-1076.
https://doi.org/10.1016/j.biortech.2017.09.109
[3]  Cesaro, A. (2021) The Valorization of the Anaerobic Digestate from the Organic Fractions of Municipal Solid Waste: Challenges and Perspectives. Journal of Environmental Management, 280, Article ID: 111742.
https://doi.org/10.1016/j.jenvman.2020.111742
[4]  Chen, T., Qiu, X., Feng, H., Yin, J. and Shen, D. (2021) Solid Digestate Disposal Strategies to Reduce the Environmental Impact and Energy Consumption of Food Waste-Based Biogas Systems. Bioresource Technology, 325, Article ID: 124706.
https://doi.org/10.1016/j.biortech.2021.124706
[5]  Zhang, S., Hou, H., Wang, G., Yao, Y., Zhang, Y. and Xu, H. (2024) Exploring the Metabolic Characteristic of Express Packaging Waste to Promote the Synergy of Pollution and Carbon Reduction. Environmental Impact Assessment Review, 106, Article ID: 107523.
https://doi.org/10.1016/j.eiar.2024.107523
[6]  Huang, S., Wang, M., Dai, Y., Deng, C., Xue, S., Qiu, F., et al. (2025) Waste to Treasure: Upcycling Waste Express Packing to Sustainable Packaging Materials. Journal of Environmental Chemical Engineering, 13, Article ID: 115016.
https://doi.org/10.1016/j.jece.2024.115016
[7]  Duan, H., Song, G., Qu, S., Dong, X. and Xu, M. (2019) Post-Consumer Packaging Waste from Express Delivery in China. Resources, Conservation and Recycling, 144, 137-143.
https://doi.org/10.1016/j.resconrec.2019.01.037
[8]  程辉. 塑料快递包装引发的环境问题与应对措施[J]. 塑料助剂, 2022(3): 71-74.
[9]  Chen, Y., Awasthi, A.K., Wei, F., Tan, Q. and Li, J. (2021) Single-use Plastics: Production, Usage, Disposal, and Adverse Impacts. Science of the Total Environment, 752, Article ID: 141772.
https://doi.org/10.1016/j.scitotenv.2020.141772
[10]  Burgess, F., Lloyd, P.D.W., Fennell, P.S. and Hayhurst, A.N. (2011) Combustion of Polymer Pellets in a Bubbling Fluidised Bed. Combustion and Flame, 158, 1638-1645.
https://doi.org/10.1016/j.combustflame.2010.12.027
[11]  Glushkov, D.O., Paushkina, K.K. and Shabardin, D.P. (2020) Co-Combustion of Coal Processing Waste, Oil Refining Waste and Municipal Solid Waste: Mechanism, Characteristics, Emissions. Chemosphere, 240, Article ID: 124892.
https://doi.org/10.1016/j.chemosphere.2019.124892
[12]  Liu, M., Han, B., Bai, J., Ru, J., Wang, X., Xing, L., et al. (2025) Investigation on the Synergistic Effects and Thermokinetic Analyses during Co-Combustion of Corn Stalk and Polyethylene Plastic: Effect of Heating Rate and Placement Method. Fuel, 385, Article ID: 134032.
https://doi.org/10.1016/j.fuel.2024.134032
[13]  胡世梯, 姚赛, 易志刚, 等. 餐厨垃圾厌氧沼渣处理及资源化利用研究进展[J]. 四川环境, 2023, 42(4): 366-372.
[14]  Guo, S., Deng, X., Liu, L., Ge, L. and Lisak, G. (2024) Comprehensive Analysis of Combustion Behavior, Kinetics, and Gas Emissions of Fungus Bran Biofuel through Torrefaction Pretreatment and Polypropylene Addition. Fuel, 364, Article ID: 131014.
https://doi.org/10.1016/j.fuel.2024.131014
[15]  Guo, F., He, Y., Hassanpour, A., Gardy, J. and Zhong, Z. (2020) Thermogravimetric Analysis on the Co-Combustion of Biomass Pellets with Lignite and Bituminous Coal. Energy, 197, Article ID: 117147.
https://doi.org/10.1016/j.energy.2020.117147
[16]  韦琛. 厨余沼渣与城市生活垃圾混合燃烧过程的特性[D]: [硕士学位论文]. 广州: 华南理工大学, 2022.
[17]  拜苏平. 可燃垃圾与餐厨沼渣的燃烧特性及排放特性研究[D]: [硕士学位论文]. 沈阳: 沈阳航空航天大学, 2022.
[18]  Wei, C., Yu, Z., Zhang, X. and Ma, X. (2021) Co-combustion Behavior of Municipal Solid Waste and Food Waste Anaerobic Digestates: Combustion Performance, Kinetics, Optimization, and Gaseous Products. Journal of Environmental Chemical Engineering, 9, Article ID: 106028.
https://doi.org/10.1016/j.jece.2021.106028
[19]  Zhang, Y., Tang, Y., Tang, J., Wang, S. and Ma, X. (2022) A Study on the Co-Combustion of Excavated Waste and Municipal Solid Waste: Thermogravimetric Characteristics and Gaseous Pollutants Emission. Journal of Environmental Chemical Engineering, 10, Article ID: 108964.
https://doi.org/10.1016/j.jece.2022.108964
[20]  Xinjie, L., Singh, S., Yang, H., Wu, C. and Zhang, S. (2021) A Thermogravimetric Assessment of the Tri-Combustion Process for Coal, Biomass and Polyethylene. Fuel, 287, Article ID: 119355.
https://doi.org/10.1016/j.fuel.2020.119355
[21]  Zheng, C., Ma, X., Yao, Z. and Chen, X. (2019) The Properties and Combustion Behaviors of Hydrochars Derived from Co-Hydrothermal Carbonization of Sewage Sludge and Food Waste. Bioresource Technology, 285, Article ID: 121347.
https://doi.org/10.1016/j.biortech.2019.121347
[22]  Zhou, C., Liu, G., Fang, T. and Lam, P.K.S. (2015) Investigation on Thermal and Trace Element Characteristics during Co-Combustion Biomass with Coal Gangue. Bioresource Technology, 175, 454-462.
https://doi.org/10.1016/j.biortech.2014.10.129
[23]  Wang, Y., Jia, L., Guo, B., Shen, X., Zheng, X., Xiang, J., et al. (2022) Investigation of Interaction Mechanisms during Co-Combustion of Sewage Sludge and Coal Slime: Combustion Characteristics and NO/SO2 Emission Behavior. Science of the Total Environment, 851, Article ID: 158166.
https://doi.org/10.1016/j.scitotenv.2022.158166
[24]  Wang, Y., Liao, Y., Chen, Y., Bin, Y. and Ma, X. (2022) Co-combustion of Coal and Composite Board Sawdust: Combustion Behaviors, Ash Slagging Characteristics, and Gaseous Pollutant Emissions and Control. Biomass Conversion and Biorefinery, 14, 27159-27173.
https://doi.org/10.1007/s13399-022-03481-2
[25]  Liu, H., Zhang, S., Feng, S., Jia, C., Guo, S., Sun, B., et al. (2020) Combustion Characteristics and Typical Pollutant Emissions of Corn Stalk Blending with Municipal Sewage Sludge. Environmental Science and Pollution Research, 28, 9792-9805.
https://doi.org/10.1007/s11356-020-11463-y
[26]  Zhang, J., Wang, Q., Zheng, P. and Wang, Y. (2014) Anaerobic Digestion of Food Waste Stabilized by Lime Mud from Papermaking Process. Bioresource Technology, 170, 270-277.
https://doi.org/10.1016/j.biortech.2014.08.003
[27]  Feng, Y., Bu, T., Zhang, Q., Han, M., Tang, Z., Yuan, G., et al. (2022) Pyrolysis Characteristics of Anaerobic Digestate from Kitchen Waste and Availability of Phosphorus in Pyrochar. Journal of Analytical and Applied Pyrolysis, 168, Article ID: 105729.
https://doi.org/10.1016/j.jaap.2022.105729
[28]  Hu, J., Yan, Y., Song, Y., Liu, J., Evrendilek, F. and Buyukada, M. (2020) Catalytic Combustions of Two Bamboo Residues with Sludge Ash, CaO, and Fe2O3: Bioenergy, Emission and Ash Deposition Improvements. Journal of Cleaner Production, 270, Article ID: 122418.
https://doi.org/10.1016/j.jclepro.2020.122418
[29]  Santi, G., Proietti, S., Moscatello, S., Stefanoni, W. and Battistelli, A. (2015) Anaerobic Digestion of Corn Silage on a Commercial Scale: Differential Utilization of Its Chemical Constituents and Characterization of the Solid Digestate. Biomass and Bioenergy, 83, 17-22.
https://doi.org/10.1016/j.biombioe.2015.08.018
[30]  Ding, Z., Chen, Z., Liu, J., Evrendilek, F., He, Y. and Xie, W. (2022) Co-Combustion, Life-Cycle Circularity, and Artificial Intelligence-Based Multi-Objective Optimization of Two Plastics and Textile Dyeing Sludge. Journal of Hazardous Materials, 426, Article ID: 128069.
https://doi.org/10.1016/j.jhazmat.2021.128069
[31]  Mao, W., Li, J., Yang, Y., Huang, B., Xu, S. and Gu, L. (2024) Co-Combustion of Organic Industrial and Municipal Solid Wastes in Shanghai: Evaluation Based on Energy Recovery, Thermal Behavior and Gases Pollutants Emissions. Journal of Environmental Chemical Engineering, 12, Article ID: 114917.
https://doi.org/10.1016/j.jece.2024.114917
[32]  廖艳芬, 马晓茜. 城市污水污泥燃烧特性和动力学特性分析[J]. 燃料化学学报, 2009, 37(3): 296-301.
[33]  Wang, Q., Wang, G., Zhang, J., Lee, J., Wang, H. and Wang, C. (2018) Combustion Behaviors and Kinetics Analysis of Coal, Biomass and Plastic. Thermochimica Acta, 669, 140-148.
https://doi.org/10.1016/j.tca.2018.09.016
[34]  Liang, W., Jiang, C., Wang, G., Ning, X., Zhang, J., Guo, X., et al. (2022) Research on the Co-Combustion Characteristics and Kinetics of Agricultural Waste Hydrochar and Anthracite. Renewable Energy, 194, 1119-1130.
https://doi.org/10.1016/j.renene.2022.05.157
[35]  Galina, N.R., Romero Luna, C.M., Arce, G.L.A.F. and Ávila, I. (2019) Comparative Study on Combustion and Oxy-Fuel Combustion Environments Using Mixtures of Coal with Sugarcane Bagasse and Biomass Sorghum Bagasse by the Thermogravimetric Analysis. Journal of the Energy Institute, 92, 741-754.
https://doi.org/10.1016/j.joei.2018.02.008
[36]  Boumanchar, I., Chhiti, Y., M’hamdi Alaoui, F.E., Elkhouakhi, M., Sahibed-Dine, A., Bentiss, F., et al. (2019) Investigation of (Co)-Combustion Kinetics of Biomass, Coal and Municipal Solid Wastes. Waste Management, 97, 10-18.
https://doi.org/10.1016/j.wasman.2019.07.033

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133