全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于DFT对紫檀芪抗氧化反应机制的研究
Study on the Mechanism of Antioxidant Response of Pterostilbene Based on DFT

DOI: 10.12677/japc.2025.142024, PP. 254-263

Keywords: 紫檀芪,抗氧化性,密度泛函理论,福井函数
Pterostilbene
, Antioxidant Properties, Density Functional Theory (DFT), Fukui Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文通过密度泛函理论(DFT)方法,研究了紫檀芪与·OH和·OOH自由基在不同溶剂中抗氧化活性的大小。从前线分子轨道结合福井函数与双描述符对紫檀芪活性位点进行预测,通过酚羟基键解离焓(BDE)、电离电位和质子解离焓(IP和PDE)、以及质子亲和力与电子转移焓(PA和ETE)进行分析,在H原子抽取机制中H原子直接转移(HAT)机制、逐步电子转移–质子转移(SET-PT)机制、质子优先损失电子转移(SPLET)机制中分析主导机制。讨论了紫檀芪在H原子抽取与自由基加成(RAF)机制中反应活性位点与·OH和·OOH自由基的反应能量。结果表明在气相中紫檀芪与·OH反应通过在中心不饱和碳自由基加成机制;与·OOH反应通过在酚羟基上H原子抽取机制。
In this paper, the magnitude of antioxidant activity of Astragalus purpurascens with ·OH and ·OOH radicals in different solvents was investigated by density flooding theory (DFT) method. The prediction of the active site of Zygostatin from the frontline molecular orbitals combined with Fukui functions and dual descriptors was analyzed by the phenolic hydroxyl bond dissociation enthalpy (BDE), ionization potential and proton dissociation enthalpy (IP and PDE), as well as the proton affinity and electron transfer enthalpy (PA and ETE), and the dominant mechanism was analyzed in the H-atom abstraction mechanism, the H-atom direct transfer (HAT) mechanism, the stepwise electron transfer-proton transfer (SET-PT) mechanism, and proton preferential loss electron transfer (SPLET) mechanism. The reaction energies of the reactive sites of Pterostilbene in the H-atom extraction and radical addition (RAF) mechanism with ·OH and ·OOH radicals were discussed. The results indicate that in the gas phase Astragalus purpurascens reacts with ·OH via an unsaturated carbon radical addition mechanism at the center; and with ·OOH via an H atom extraction mechanism at the phenolic hydroxyl group.

References

[1]  Estrela, J.M., Ortega, A., Mena, S., Rodriguez, M.L. and Asensi, M. (2013) Pterostilbene: Biomedical Applications. Critical Reviews in Clinical Laboratory Sciences, 50, 65-78.
https://doi.org/10.3109/10408363.2013.805182
[2]  Murphy, M.P. (2008) How Mitochondria Produce Reactive Oxygen Species. Biochemical Journal, 417, 1-13.
https://doi.org/10.1042/bj20081386
[3]  Munro, D. and Pamenter, M.E. (2019) Comparative Studies of Mitochondrial Reactive Oxygen Species in Animal Longevity: Technical Pitfalls and Possibilities. Aging Cell, 18, e13009.
https://doi.org/10.1111/acel.13009
[4]  Kim, H., Seo, K. and Yokoyama, W. (2020) Chemistry of Pterostilbene and Its Metabolic Effects. Journal of Agricultural and Food Chemistry, 68, 12836-12841.
https://doi.org/10.1021/acs.jafc.0c00070
[5]  Alfadda, A.A. and Sallam, R.M. (2012) Reactive Oxygen Species in Health and Disease. Journal of Biomedicine and Biotechnology, 2012, Article ID: 936486.
https://doi.org/10.1155/2012/936486
[6]  Sahoo, B.M., Banik, B.K., Borah, P. and Jain, A. (2022) Reactive Oxygen Species (ROS): Key Components in Cancer Therapies. Anti-Cancer Agents in Medicinal Chemistry, 22, 215-222.
https://doi.org/10.2174/1871520621666210608095512
[7]  Li, Y., Li, S. and Lin, C. (2017) Effect of Resveratrol and Pterostilbene on Aging and Longevity. BioFactors, 44, 69-82.
https://doi.org/10.1002/biof.1400
[8]  Zaric, B.L., Macvanin, M.T. and Isenovic, E.R. (2023) Free Radicals: Relationship to Human Diseases and Potential Therapeutic Applications. The International Journal of Biochemistry & Cell Biology, 154, Article ID: 106346.
https://doi.org/10.1016/j.biocel.2022.106346
[9]  Kehrer, J.P. and Klotz, L. (2015) Free Radicals and Related Reactive Species as Mediators of Tissue Injury and Disease: Implications for Health. Critical Reviews in Toxicology, 45, 765-798.
https://doi.org/10.3109/10408444.2015.1074159
[10]  Liu, Y., You, Y., Lu, J., Chen, X. and Yang, Z. (2020) Recent Advances in Synthesis, Bioactivity, and Pharmacokinetics of Pterostilbene, an Important Analog of Resveratrol. Molecules, 25, Article 5166.
https://doi.org/10.3390/molecules25215166
[11]  Chan, E.W.C., Wong, C.W., Tan, Y.H., et al. (2019) Resveratrol and Pterostilbene: A Comparative Overview of Their Chemistry, Biosynthesis, Plant Sources and Pharmacological Properties. Journal of Applied Pharmaceutical Science, 9, 124-129.
[12]  Acharya, J.D. and Ghaskadbi, S.S. (2013) Protective Effect of Pterostilbene against Free Radical Mediated Oxidative Damage. BMC Complementary and Alternative Medicine, 13, Article No. 238.
https://doi.org/10.1186/1472-6882-13-238
[13]  张晓然, 刘思远, 杨浩然, 等. 基于网络药理学探究紫檀芪对阿尔茨海默病的作用及分子机制[J]. 神经药理学报, 2023, 13(5): 1-5, 13.
[14]  Pino‐Rios, R., Yañez, O., Inostroza, D., Ruiz, L., Cardenas, C., Fuentealba, P., et al. (2017) Proposal of a Simple and Effective Local Reactivity Descriptor through a Topological Analysis of an Orbital‐weighted Fukui Function. Journal of Computational Chemistry, 38, 481-488.
https://doi.org/10.1002/jcc.24699
[15]  Van Trang, N., Thuy, P.T., Mai Thanh, D.T. and Son, N.T. (2021) Benzofuran-Stilbene Hybrid Compounds: An Antioxidant Assessment—A DFT Study. RSC Advances, 11, 12971-12980.
https://doi.org/10.1039/d1ra01076j
[16]  Guardia, J.J., Moral, M., Granadino-Roldán, J.M. and Garzón, A. (2016) A DFT Study on the Mechanism and Kinetics of Reactions of Pterostilbene with Hydroxyl and Hydroperoxyl Radicals. Computational and Theoretical Chemistry, 1077, 113-118.
https://doi.org/10.1016/j.comptc.2015.11.004
[17]  Mahmoudi, S., Dehkordi, M.M. and Asgarshamsi, M.H. (2021) Density Functional Theory Studies of the Antioxidants—A Review. Journal of Molecular Modeling, 27, Article No. 271.
https://doi.org/10.1007/s00894-021-04891-1
[18]  Iuga, C., Alvarez-Idaboy, J.R. and Russo, N. (2012) Antioxidant Activity of Trans-Resveratrol toward Hydroxyl and Hydroperoxyl Radicals: A Quantum Chemical and Computational Kinetics Study. The Journal of Organic Chemistry, 77, 3868-3877.
https://doi.org/10.1021/jo3002134
[19]  Zhao, Y. and Truhlar, D.G. (2007) The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theoretical Chemistry Accounts, 120, 215-241.
https://doi.org/10.1007/s00214-007-0310-x
[20]  Zhang, J., Zhang, H., Wu, T., Wang, Q. and van der Spoel, D. (2017) Comparison of Implicit and Explicit Solvent Models for the Calculation of Solvation Free Energy in Organic Solvents. Journal of Chemical Theory and Computation, 13, 1034-1043.
https://doi.org/10.1021/acs.jctc.7b00169
[21]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al. (2016) Gaussian 16 Rev. C.01.
https://www.scirp.org/reference/referencespapers?referenceid=3834728
[22]  Wang, B., Rong, C., Chattaraj, P.K. and Liu, S. (2019) A Comparative Study to Predict Regioselectivity, Electrophilicity and Nucleophilicity with Fukui Function and Hirshfeld Charge. Theoretical Chemistry Accounts, 138, Article No. 124.
https://doi.org/10.1007/s00214-019-2515-1
[23]  Lu, T. and Chen, F. (2011) Multiwfn: A Multifunctional Wavefunction Analyzer. Journal of Computational Chemistry, 33, 580-592.
https://doi.org/10.1002/jcc.22885
[24]  Lu, T. and Chen, Q. (2022) Realization of Conceptual Density Functional Theory and Information‐Theoretic Approach in Multiwfn Program. In: Liu, S.B., Ed., Conceptual Density Functional Theory: Towards a New Chemical Reactivity Theory, Volume 2, Wiley, 631-647.
[25]  Pino-Rios, R., Inostroza, D., Cárdenas-Jirón, G. and Tiznado, W. (2019) Orbital-Weighted Dual Descriptor for the Study of Local Reactivity of Systems with (Quasi-) Degenerate States. The Journal of Physical Chemistry A, 123, 10556-10562.
https://doi.org/10.1021/acs.jpca.9b07516
[26]  Marković, Z., Tošović, J., Milenković, D. and Marković, S. (2016) Revisiting the Solvation Enthalpies and Free Energies of the Proton and Electron in Various Solvents. Computational and Theoretical Chemistry, 1077, 11-17.
https://doi.org/10.1016/j.comptc.2015.09.007
[27]  Liu, Y., Liu, C. and Li, J. (2020) Comparison of Vitamin C and Its Derivative Antioxidant Activity: Evaluated by Using Density Functional Theory. ACS Omega, 5, 25467-25475.
https://doi.org/10.1021/acsomega.0c04318
[28]  Dehkordi, M.M., Asgarshamsi, M.H., Fassihi, A. and Zborowski, K.K. (2022) A Comparative DFT Study on the Antioxidant Activity of Some Novel 3‐Hydroxypyridine‐4‐One Derivatives. Chemistry & Biodiversity, 19, e202100703.
https://doi.org/10.1002/cbdv.202100703
[29]  裴玲, 李峰. 亚胺白藜芦醇抗氧化性质的理论研究[J]. 化学研究与应用, 2019, 31(4): 612-618.
[30]  Vo, Q.V., Van Bay, M., Nam, P.C. and Mechler, A. (2019) Hydroxyl Radical Scavenging of Indole-3-Carbinol: A Mechanistic and Kinetic Study. ACS Omega, 4, 19375-19381.
https://doi.org/10.1021/acsomega.9b02782

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133