全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

生物质衍生碳基氧还原电催化剂的研究进展
Research Progress of Biomass-Derived Carbon-Based Electrocatalyst for Oxygen Reduction Reaction

DOI: 10.12677/japc.2025.142023, PP. 241-253

Keywords: 生物质,碳材料,氧还原,电催化剂
Biomass
, Carbon, ORR, Electrocatalyst

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧还原(Oxygen Reduction Reaction, ORR)电催化剂是燃料电池中核心材料之一,开发活性高、稳定性好、廉价的电催化剂制备技术对推动燃料电池大规模商业化应用至关重要。与金属基ORR电催化剂(如低Pt电催化剂、非贵金属电催化剂等)相比,具有导电性好、稳定性高、孔隙率和形貌及功能性可调等诸多优点的碳基电催化剂则更具有竞争力。生物质是自然界中最为丰富的可再生资源,通常富含多种杂原子,近年来由生物质合成的碳基ORR电催化剂引起研究者们的广泛关注。本文以生物质来源(植物类、动物废弃物类)为出发点,从合成策略、物理/化学性质、电催化活性、抗毒化能力及耐久性等方面,对生物质衍生碳基ORR催化剂的最新研究进展进行了综述,并分析了制备过程中存在的难点,对该领域的研究前景进行了展望。
Oxygen reduction reaction (ORR) electrocatalyst is one of the core materials in fuel cells. It is very important to develop an electrocatalyst preparation technology with high activity, good stability and low cost to promote the large-scale commercial application of fuel cells. Compared with metal-based ORR electrocatalysts (such as low Pt electrocatalyst and non-noble metal electrocatalyst), the carbon-based electrocatalysts have many advantages such as good electrical conductivity, high stability, adjustable porosity, morphology and functionality, etc., which are more competitive. Biomass is the most abundant renewable resource in nature, which is usually rich in a variety of heteroatoms. In recent years, carbon-based ORR electrocatalysts synthesized from biomass have attracted extensive attention of researchers. Based on the types of biomasses (plant, animal waste) as a starting point, from the synthetic strategy, physical/chemical properties, catalytic activity, poison resistance and durability, etc., the latest research progress of biomass-derived carbon-based ORR electricity catalysts are reviewed, the difficulties that exist in the preparation process are analyzed, and the research prospects in this field are also discussed.

References

[1]  Liu, J., Mooney, H., Hull, V., Davis, S.J., Gaskell, J., Hertel, T., et al. (2015) Systems Integration for Global Sustainability. Science, 347, Article 1258832.
https://doi.org/10.1126/science.1258832
[2]  侯明, 邵志刚, 俞红梅, 衣宝廉. 2019年氢燃料电池研发热点回眸[J]. 科技导报, 2020, 38(1): 137-150.
[3]  衣宝廉. 燃料电池-原理∙技术∙应用[M]. 北京: 化学工业出版社, 1998.
[4]  Kim, M., Firestein, K.L., Fernando, J.F.S., Xu, X., Lim, H., Golberg, D.V., et al. (2022) Strategic Design of Fe and N Co-Doped Hierarchically Porous Carbon as Superior ORR Catalyst: From the Perspective of Nanoarchitectonics. Chemical Science, 13, 10836-10845.
https://doi.org/10.1039/d2sc02726g
[5]  Steele, B.C.H. and Heinzel, A. (2001) Materials for Fuel-Cell technologies. Nature, 414, 345-352.
https://doi.org/10.1038/35104620
[6]  Winter, M. and Brodd, R.J. (2004) What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews, 104, 4245-4270.
https://doi.org/10.1021/cr020730k
[7]  Varcoe, J.R. and Slade, R.C.T. (2005) Prospects for Alkaline Anion‐Exchange Membranes in Low Temperature Fuel Cells. Fuel Cells, 5, 187-200.
https://doi.org/10.1002/fuce.200400045
[8]  Merle, G., Wessling, M. and Nijmeijer, K. (2011) Anion Exchange Membranes for Alkaline Fuel Cells: A Review. Journal of Membrane Science, 377, 1-35.
https://doi.org/10.1016/j.memsci.2011.04.043
[9]  Jaouen, F., Proietti, E., Lefèvre, M., Chenitz, R., Dodelet, J., Wu, G., et al. (2011) Recent Advances in Non-Precious Metal Catalysis for Oxygen-Reduction Reaction in Polymer Electrolyte Fuelcells. Energy Environ. Sci., 4, 114-130.
https://doi.org/10.1039/c0ee00011f
[10]  Li, W., Liang, C., Zhou, W., Qiu, J., Zhou, Sun, G., et al. (2003) Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells. The Journal of Physical Chemistry B, 107, 6292-6299.
https://doi.org/10.1021/jp022505c
[11]  Yang, Z., Yao, Z., Li, G., Fang, G., Nie, H., Liu, Z., et al. (2011) Sulfur-Doped Graphene as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction. ACS Nano, 6, 205-211.
https://doi.org/10.1021/nn203393d
[12]  Borghei, M., Lehtonen, J., Liu, L. and Rojas, O.J. (2017) Advanced Biomass‐Derived Electrocatalysts for the Oxygen Reduction Reaction. Advanced Materials, 30, Article No. 27.
https://doi.org/10.1002/adma.201703691
[13]  Deng, J., Li, M. and Wang, Y. (2016) Biomass-Derived Carbon: Synthesis and Applications in Energy Storage and Conversion. Green Chemistry, 18, 4824-4854.
https://doi.org/10.1039/c6gc01172a
[14]  Dessalle, A., Quílez-Bermejo, J., Fierro, V., Xu, F. and Celzard, A. (2023) Recent Progress in the Development of Efficient Biomass-Based ORR Electrocatalysts. Carbon, 203, 237-260.
https://doi.org/10.1016/j.carbon.2022.11.073
[15]  Field, C.B., Behrenfeld, M.J., Randerson, J.T. and Falkowski, P. (1998) Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science, 281, 237-240.
https://doi.org/10.1126/science.281.5374.237
[16]  尹增芳, 樊汝坟. 植物细胞壁的研究进展[J]. 植物研究, 1999, 19(4): 407-414.
[17]  张豁中, 温玉麟, 编著. 动物活性成分化学[M]. 天津: 天津科学技术出版社, 1900.
[18]  蔡庆生. 植物生理学[J]. 北京: 中国农业大学出版社, 2011.
[19]  史建华, 赵建国, 邢宝岩. 以生物质为催化剂化学气相沉积制备碳纳米管[J]. 新型炭材料, 2012, 27(3): 175-180.
[20]  Zhou, H., Zhang, J., Amiinu, I.S., Zhang, C., Liu, X., Tu, W., et al. (2016) Transforming Waste Biomass with an Intrinsically Porous Network Structure into Porous Nitrogen-Doped Graphene for Highly Efficient Oxygen Reduction. Physical Chemistry Chemical Physics, 18, 10392-10399.
https://doi.org/10.1039/c6cp00174b
[21]  Zhao, Q., Ma, Q., Pan, F., Wang, Z., Yang, B., Zhang, J., et al. (2016) Facile Synthesis of Nitrogen-Doped Carbon Nanosheets as Metal-Free Catalyst with Excellent Oxygen Reduction Performance in Alkaline and Acidic Media. Journal of Solid State Electrochemistry, 20, 1469-1479.
https://doi.org/10.1007/s10008-016-3157-z
[22]  He, D., Zhao, W., Li, P., Liu, Z., Wu, H., Liu, L., et al. (2019) Bifunctional Biomass-Derived 3D Nitrogen-Doped Porous Carbon for Oxygen Reduction Reaction and Solid-State Supercapacitor. Applied Surface Science, 465, 303-312.
https://doi.org/10.1016/j.apsusc.2018.09.185
[23]  Huang, B., Liu, Y., Guo, Q., Fang, Y., Titirici, M., Wang, X., et al. (2020) Porous Carbon Nanosheets from Biological Nucleobase Precursor as Efficient pH-Independent Oxygen Reduction Electrocatalyst. Carbon, 156, 179-186.
https://doi.org/10.1016/j.carbon.2019.09.056
[24]  Gao, Q., Wang, Y., Yang, M., Shen, W., Jiang, Y., He, R., et al. (2021) N, S-Codoped Porous Carbon as Metal-Free Electrocatalyst for Oxygen Reduction Reaction. Journal of Solid State Electrochemistry, 25, 1765-1773.
https://doi.org/10.1007/s10008-021-04947-5
[25]  Maliutina, K., He, C., Huang, J., Yu, J., Li, F., He, C., et al. (2021) Structural and Electronic Engineering of Biomass-Derived Carbon Nanosheet Composite for Electrochemical Oxygen Reduction. Sustainable Energy & Fuels, 5, 2114-2126.
https://doi.org/10.1039/d0se01631d
[26]  Wang, S., Chen, Y., Zhao, Y., Wei, G., Li, D. and Liu, X. (2022) Mesopore-Dominated N, S Co-Doped Carbon as Advanced Oxygen Reduction Reaction Electrocatalysts for Zn-Air Battery. Journal of Materials Science, 57, 19431-19446.
https://doi.org/10.1007/s10853-022-07784-7
[27]  赵冬梅, 李振伟, 刘领弟. 石墨烯/碳纳米管复合材料的制备及应用进展[J]. 化学学报, 2014, 72(2): 185-200.
[28]  Li, M., Xiong, Y., Liu, X., Han, C., Zhang, Y., Bo, X., et al. (2015) Iron and Nitrogen Co-Doped Carbon Nanotube@hollow Carbon Fibers Derived from Plant Biomass as Efficient Catalysts for the Oxygen Reduction Reaction. Journal of Materials Chemistry A, 3, 9658-9667.
https://doi.org/10.1039/c5ta00958h
[29]  Liu, Z., Wang, F., Li, M. and Ni, Z. (2016) N, S and P-Ternary Doped Carbon Nano-Pore/Tube Composites Derived from Natural Chemicals in Waste Sweet Osmanthus Fruit with Superior Activity for Oxygen Reduction in Acidic and Alkaline Media. RSC Advances, 6, 37500-37505.
https://doi.org/10.1039/c6ra08371d
[30]  Zhou, Q., Thokchom, A.K., Kim, D. and Kim, T. (2017) Inkjet-Printed Ag Micro-/Nanostructure Clusters on Cu Substrates for in-situ Pre-Concentration and Surface-Enhanced Raman Scattering. Sensors and Actuators B: Chemical, 243, 176-183.
https://doi.org/10.1016/j.snb.2016.11.134
[31]  张金超, 杨康宁, 张海松. 碳纳米材料在生物医学领域的应用现状及展望[J]. 化学进展, 2013, 2(5): 397-408.
[32]  闻雷, 刘成名, 宋仁升. 石墨烯材料的储锂行为及其潜在应用[J]. 化学学报, 2014, 7(2): 333-344.
[33]  张芸秋, 梁勇明, 周建新. 石墨烯掺杂的研究进展[J]. 化学学报, 2014, 7(2): 367-377.
[34]  Zhou, H., Zhang, J., Amiinu, I.S., Zhang, C., Liu, X., Tu, W., et al. (2016) Transforming Waste Biomass with an Intrinsically Porous Network Structure into Porous Nitrogen-Doped Graphene for Highly Efficient Oxygen Reduction. Physical Chemistry Chemical Physics, 18, 10392-10399.
https://doi.org/10.1039/c6cp00174b
[35]  Zhou, H., Zhang, J., Zhu, J., Liu, Z., Zhang, C. and Mu, S. (2016) A Self-Template and KOH Activation Co-Coupling Strategy to Synthesize Ultrahigh Surface Area Nitrogen-Doped Porous Graphene for Oxygen Reduction. RSC Advances, 6, 73292-73300.
https://doi.org/10.1039/c6ra16703a
[36]  Liu, Y., Sun, K., Cui, X., Li, B. and Jiang, J. (2020) Defect-Rich, Graphenelike Carbon Sheets Derived from Biomass as Efficient Electrocatalysts for Rechargeable Zinc-Air Batteries. ACS Sustainable Chemistry & Engineering, 8, 2981-2989.
https://doi.org/10.1021/acssuschemeng.9b07621
[37]  Wang, K., Wang, H., Ji, S., Feng, H., Linkov, V. and Wang, R. (2013) Biomass-Derived Activated Carbon as High-Performance Non-Precious Electrocatalyst for Oxygen Reduction. RSC Advances, 3, 12039-12042.
https://doi.org/10.1039/c3ra41978a
[38]  Liang, K., Xu, Y., Wang, L., Liu, Y. and Liu, Y. (2019) Alkali‐Driven Assembly of Protein‐Rich Biomass Boosts the Electrocatalytic Activity of the Derived Carbon Materials for Oxygen Reduction. ChemCatChem, 11, 4822-4829.
https://doi.org/10.1002/cctc.201901247
[39]  Wu, H., Geng, J., Ge, H., Guo, Z., Wang, Y. and Zheng, G. (2016) Egg‐derived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts. Advanced Energy Materials, 6, Article No. 8.
https://doi.org/10.1002/aenm.201600794
[40]  Guo, C., Liao, W., Li, Z. and Chen, C. (2015) Exploration of the Catalytically Active Site Structures of Animal Biomass-Modified on Cheap Carbon Nanospheres for Oxygen Reduction Reaction with High Activity, Stability and Methanol-Tolerant Performance in Alkaline Medium. Carbon, 85, 279-288.
https://doi.org/10.1016/j.carbon.2015.01.007
[41]  Zheng, J., Guo, C., Chen, C., Fan, M., Gong, J., Zhang, Y., et al. (2015) High Content of Pyridinic-and Pyrrolic-Nitrogen-Modified Carbon Nanotubes Derived from Blood Biomass for the Electrocatalysis of Oxygen Reduction Reaction in Alkaline Medium. Electrochimica Acta, 168, 386-393.
https://doi.org/10.1016/j.electacta.2015.03.173
[42]  Chaudhari, N.K., Song, M.Y. and Yu, J. (2014) Heteroatom-Doped Highly Porous Carbon from Human Urine. Scientific Reports, 4, Article No. 5221.
https://doi.org/10.1038/srep05221
[43]  Tran, T., Song, M.Y., Kang, T., Samdani, J., Park, H., Kim, H., et al. (2018) Iron Phosphide Incorporated into Iron‐treated Heteroatoms‐Doped Porous Bio‐Carbon as Efficient Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem, 5, 1944-1953.
https://doi.org/10.1002/celc.201800091
[44]  Maciel, D., Veres, S.P., Kreuzer, H.J. and Kreplak, L. (2016) Quantitative Phase Measurements of Tendon Collagen Fibres. Journal of Biophotonics, 10, 111-117.
https://doi.org/10.1002/jbio.201500263
[45]  Pusztahelyi, T. (2018) Chitin and Chitin-Related Compounds in Plant-Fungal Interactions. Mycology, 9, 189-201.
https://doi.org/10.1080/21501203.2018.1473299
[46]  Wang, R., Wang, K., Wang, Z., Song, H., Wang, H. and Ji, S. (2015) Pig Bones Derived N-Doped Carbon with Multi-Level Pores as Electrocatalyst for Oxygen Reduction. Journal of Power Sources, 297, 295-301.
https://doi.org/10.1016/j.jpowsour.2015.07.107
[47]  Song, H., Li, H., Wang, H., Key, J., Ji, S., Mao, X., et al. (2014) Chicken Bone-Derived N-Doped Porous Carbon Materials as an Oxygen Reduction Electrocatalyst. Electrochimica Acta, 147, 520-526.
https://doi.org/10.1016/j.electacta.2014.09.146
[48]  Liu, Q., Duan, Y., Zhao, Q., Pan, F., Zhang, B. and Zhang, J. (2014) Direct Synthesis of Nitrogen-Doped Carbon Nanosheets with High Surface Area and Excellent Oxygen Reduction Performance. Langmuir, 30, 8238-8245.
https://doi.org/10.1021/la404995y
[49]  Liu, R., Zhang, H., Liu, S., Zhang, X., Wu, T., Ge, X., et al. (2016) Shrimp-Shell Derived Carbon Nanodots as Carbon and Nitrogen Sources to Fabricate Three-Dimensional N-Doped Porous Carbon Electrocatalysts for the Oxygen Reduction Reaction. Physical Chemistry Chemical Physics, 18, 4095-4101.
https://doi.org/10.1039/c5cp06970j
[50]  Zhang, J., Wu, S., Chen, X., Cheng, K., Pan, M. and Mu, S. (2014) An Animal Liver Derived Non-Precious Metal Catalyst for Oxygen Reduction with High Activity and Stability. RSC Advances, 4, 32811-32816.
https://doi.org/10.1039/c4ra06495j
[51]  Zhang, J., Zhou, H., Liu, X., Zhang, J., Peng, T., Yang, J., et al. (2016) Keratin-Derived S/N Co-Doped Graphene-Like Nanobubble and Nanosheet Hybrids for Highly Efficient Oxygen Reduction. Journal of Materials Chemistry A, 4, 15870-15879.
https://doi.org/10.1039/c6ta06212a
[52]  Zhang, J., Wu, C., Wang, J., Xia, M., Li, S., Liu, L., et al. (2024) DFT-Guided Synthesis of N, B Dual-Doped Porous Carbon from Saccharina Japonica for Enhanced Oxygen Reduction Catalysis. Frontiers in Chemistry, 12, Article 1478560.
https://doi.org/10.3389/fchem.2024.1478560

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133