全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SiPM的高性能光子数可分辨探究
High-Performance Photon Number Resolution Research Based on SiPM

DOI: 10.12677/japc.2025.142022, PP. 229-240

Keywords: 硅光电倍增管(SiPM),光子数可分辨,高通滤波放大,垂直分辨率
Silicon Photomultiplier (SiPM)
, Photon-Number-Resolving, High-Pass Filter Amplification, Vertical Resolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

硅光电倍增管(SiPM)光子数分辨性能受限于暗计数、光学串扰及高频信号堆积等,无法满足高速光子检测的需求。我们基于被动淬灭SiPM,采用了高通滤波放大与低噪声射频放大结合的方案,增强信号幅度的同时抑制基线漂移,在保障信号完整性的前提下提升多光子雪崩事件的分辨率,实现了雪崩信号的大动态范围线性提取。高通滤波后,雪崩信号的下降时间从50.4 ns减小到3.7 ns,减少了雪崩的堆叠效应,拓宽了器件的响应带宽。在激光重复频率为10 MHz的条件下,实现了最多25个光子的光子数分辨。此外,SiPM输出信号的有效采集对其分辨性能至关重要,我们通过调节示波器垂直采样分辨率,确定了最适合信号采样的区间,为后续SiPM光子数可分辨探测器的集成设计以及动态范围优化提供支持。
The photon-number-resolving capability of silicon photomultipliers (SiPM) is constrained by dark counts, optical crosstalk, and high-frequency signal pile-up, limiting their application in high-speed photon detection. In this study, we developed a solution for passive quenching SiPM by integrating high-pass filter amplification with low-noise radiofrequency amplification. This approach enhances signal amplitude while suppressing baseline drift, achieving high-resolution discrimination of multi-photon avalanche events and enabling linear extraction of avalanche signals across a wide dynamic range. After high-pass filter, the avalanche signal fall time was reduced from 50.4 ns to 3.7 ns, effectively mitigating avalanche pile-up effects and expanding the device bandwidth. Under 10 MHz laser repetition rate excitation, the system demonstrated photon-number resolution for up to 25 photons. Furthermore, the effective acquisition of the SiPM output signal is crucial to its resolution performance. We optimized signal acquisition by adjusting the vertical resolution of the oscilloscope to determine the optimal sampling parameters, providing critical guidance for the integrated design and dynamic range optimization of photon-number-resolving SiPM detectors.

References

[1]  周飞, 王向斌. 实用化量子通信技术[J]. 信息安全研究, 2017, 3(1): 80-85.
[2]  惠俊, 柴洪洲, 向民志, 等. 量子增强星载光子计数激光雷达阈值检测性能[J]. 红外与激光工程, 2023, 52(4): 150-160.
[3]  王晓辉, 胡新奇, 俞信, 等. 光子计数成像探测系统及其在生命科学中的应用[J]. 北京理工大学学报, 1997, 17(4): 107-110.
[4]  Zhang, T., Huang, J., Zhang, X., Ding, C., Yu, H., Xiao, Y., et al. (2024) Superconducting Single-Photon Detector with a Speed of 5 GHz and a Photon Number Resolution of 61. Photonics Research, 12, 1328-1333.
https://doi.org/10.1364/prj.522714
[5]  阎珍德. MPPC简介及其性能测试[J]. 电子测试, 2018(15): 49-50.
[6]  Akiba, M., Inagaki, K. and Tsujino, K. (2012) Photon Number Resolving SiPM Detector with 1 GHz Count Rate. Optics Express, 20, 2779-2788.
https://doi.org/10.1364/oe.20.002779
[7]  刘欣缘, 肖毅, 马跃, 等. 不同鉴别阈值条件下SiPM光子计数激光雷达探测模型及性能分析[J]. 红外与毫米波学报, 2023, 42(6): 863-873.
[8]  孙颖, 梁焰. 高速MPPC的光子数可分辨探测[J]. 光学仪器, 2022, 44(1): 22-28.
[9]  Gola, A., Ferri, A., Tarolli, A., et al. (2013) A Novel Approach to Position-Sensitive Silicon Photomultipliers: First Results. 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), Seoul, 27 October 2013-2 November 2013, 1-4,
[10]  Buzhan, P., Dolgoshein, B., Filatov, L., Ilyin, A., Kantzerov, V., Kaplin, V., et al. (2003) Silicon Photomultiplier and Its Possible Applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 504, 48-52.
https://doi.org/10.1016/s0168-9002(03)00749-6
[11]  Gundacker, S., Turtos, R.M., Auffray, E., Paganoni, M. and Lecoq, P. (2019) High-Frequency SiPM Readout Advances Measured Coincidence Time Resolution Limits in TOF-PET. Physics in Medicine & Biology, 64, Article 055012.
https://doi.org/10.1088/1361-6560/aafd52
[12]  刘红敏, 龙金燕, 代雷, 等. 大动态范围外延电阻淬灭型硅光电倍增器[J]. 光学精密工程, 2020, 28(3): 535-541.
[13]  桑涛, 郝晓剑, 张根甫. 硅光电倍增管(SiPM)适配电路设计[J]. 光电技术应用, 2015(4): 46-50.
[14]  成伟帅. 用于硅光电倍增管读出的前端集成电路研究[D]: [博士学位论文]. 北京: 中国科学院大学, 2020.
[15]  Siminfar, A.R. and Shoaei, O. (2019) Development of a Passive Quenching SiPM-Based Detection System for Quantification of Real Time PCR Products Based on Fluorescence Lifetime. Journal of Instrumentation, 14, P05019.
https://doi.org/10.1088/1748-0221/14/05/p05019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133