全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

硫酸盐添加剂对污泥焚烧飞灰煅烧过程中磷形态转化的影响
Effect of Sulfate Additives on the Transformation of Phosphorus during the Calcination of Incinerated Sewage Sludge Ash

DOI: 10.12677/japc.2025.142021, PP. 220-228

Keywords: 污泥焚烧飞灰,硫酸盐,磷形态,生物有效性,柠檬酸
Incinerated Sewage Sludge Ash
, Sulfate, Phosphorus Forms, Bioavailability, Citric Acid

Full-Text   Cite this paper   Add to My Lib

Abstract:

污泥焚烧飞灰磷含量较高,但存在形式复杂且生物利用率低。开发污泥焚烧飞灰磷回收技术成为缓解磷危机的重要途径。采用高温煅烧法探究Na2SO4和K2SO4对污泥焚烧飞灰中磷形态转化及生物有效性的影响。结果表明,添加硫酸盐能显著促进NAIP向AP转化,最佳Na2SO4和K2SO4添加比均为10%,此时AP占IP比达到最大,分别为76.59%和55.41%。当添加比为20%时,磷的生物有效性达到峰值,分别为41.8%和48.8%。但AP含量与磷的生物有效性呈现出相反的趋势。XRD分析表明,硫酸盐添加剂能促使飞灰中生成多种AP矿物,但部分AP (如CaP2O6)因柠檬酸溶解性较差而导致其生物有效性低。综上,硫酸盐添加剂可以同时提高AP转化效率和生物有效性,其中K2SO4在提升磷的生物有效性方面更具优势。该研究结果可为从污泥焚烧飞灰中回收磷资源提供理论参考。
The phosphorus content of incinerated sewage sludge ash is relatively high, but it exists in complex forms and has low bioavailability. The development of incinerated sewage sludge ash phosphorus recovery technology has become an important way to alleviate the phosphorus crisis. High-temperature calcination method is used to explore the effects of Na2SO4 and K2SO4 on the transformation of phosphorus forms and bioavailability in incinerated sewage sludge ash. The results showed that the addition of sulfate significantly promoted the conversion of NAIP to AP, with the optimal ratios of Na2SO4 and K2SO4 both being 10%. At this point, the proportion of AP to IP reached its maximum, at 76.59% and 55.41%, respectively. When the addition ratio is 20%, the bioavailability of phosphorus reaches its peak at 41.8% and 48.8%, respectively. However, the AP content showed an opposite trend to the bioavailability of phosphorus. XRD analysis shows that sulfate additives can promote the formation of various AP minerals in fly ash, but some APs (such as CaP2O6) have low bioavailability due to poor citric acid solubility. In summary, sulfate additives can simultaneously improve AP conversion efficiency and bioavailability, with K2SO4 having a greater advantage in enhancing phosphorus bioavailability. The research results can provide theoretical reference for the recovery of phosphorus resources from incinerated sewage sludge ash.

References

[1]  Li, B., Ng, S.J., Han, J., Li, M., Zeng, J., Guo, D., et al. (2023) Network Evolution and Risk Assessment of the Global Phosphorus Trade. Science of the Total Environment, 860, Article ID: 160433.
https://doi.org/10.1016/j.scitotenv.2022.160433
[2]  Egle, L., Rechberger, H., Krampe, J. and Zessner, M. (2016) Phosphorus Recovery from Municipal Wastewater: An Integrated Comparative Technological, Environmental and Economic Assessment of P Recovery Technologies. Science of the Total Environment, 571, 522-542.
https://doi.org/10.1016/j.scitotenv.2016.07.019
[3]  Hu, Y., Guo, J., An, D., Qian, Y., Chen, J. and Zhou, Z. (2024) Phosphorus Recovery from Sewage Sludge via Mg-Air Battery System. Science of the Total Environment, 926, Article ID: 171805.
https://doi.org/10.1016/j.scitotenv.2024.171805
[4]  Liang, S., Yang, L., Chen, H., Yu, W., Tao, S., Yuan, S., et al. (2021) Phosphorus Recovery from Incinerated Sewage Sludge Ash (ISSA) and Reutilization of Residues for Sludge Pretreated by Different Conditioners. Resources, Conservation and Recycling, 169, Article ID: 105524.
https://doi.org/10.1016/j.resconrec.2021.105524
[5]  Boniardi, G., Paini, E., Seljak, T., Azzellino, A., Volonterio, A., Canziani, R., et al. (2024) Optimization of Phosphorus Wet Acid Extraction from Sewage Sludge Ashes: Detailed Process Insight via Multi-Variate Statistical Techniques. Journal of Cleaner Production, 458, Article ID: 142491.
https://doi.org/10.1016/j.jclepro.2024.142491
[6]  Jama-Rodzeńska, A., Sowiński, J., Koziel, J.A. and Białowiec, A. (2021) Phosphorus Recovery from Sewage Sludge Ash Based on Cradle-to-Cradle Approach—Mini-Review. Minerals, 11, Article No. 985.
https://doi.org/10.3390/min11090985
[7]  Fang, L., Zhang, Z., Mei, Y., Xu, L. and Ren, Z. (2023) Phosphorus Recovery and Simultaneous Heavy Metal Removal from ISSA in a Two-Compartment Cell. Water, 15, Article No. 226.
https://doi.org/10.3390/w15020226
[8]  Liu, J., Fu, J., Ning, X., Sun, S., Wang, Y., Xie, W., et al. (2015) An Experimental and Thermodynamic Equilibrium Investigation of the Pb, Zn, Cr, Cu, Mn and Ni Partitioning during Sewage Sludge Incineration. Journal of Environmental Sciences, 35, 43-54.
https://doi.org/10.1016/j.jes.2015.01.027
[9]  Nowak, B., Frías Rocha, S., Aschenbrenner, P., Rechberger, H. and Winter, F. (2012) Heavy Metal Removal from MSW Fly Ash by Means of Chlorination and Thermal Treatment: Influence of the Chloride Type. Chemical Engineering Journal, 179, 178-185.
https://doi.org/10.1016/j.cej.2011.10.077
[10]  Vogel, C., Exner, R.M. and Adam, C. (2012) Heavy Metal Removal from Sewage Sludge Ash by Thermochemical Treatment with Polyvinylchloride. Environmental Science & Technology, 47, 563-567.
https://doi.org/10.1021/es300610e
[11]  郝晓地, 于晶伦, 刘然彬, 等. 剩余污泥焚烧灰分磷回收及其技术进展[J]. 环境科学学报, 2020, 40(4): 1149-1159.
[12]  Herzel, H., Stemann, J., Simon, S. and Adam, C. (2021) Comparison of Thermochemical Treatment of Sewage Sludge Ash with Sodium Sulphate in Laboratory-Scale and Pilot-Scale Experiments. International Journal of Environmental Science and Technology, 19, 1997-2006.
https://doi.org/10.1007/s13762-021-03252-y
[13]  Ruban, V., López-Sánchez, J.F., Pardo, P., Rauret, G., Muntau, H. and Quevauviller, P. (2001) Harmonized Protocol and Certified Reference Material for the Determination of Extractable Contents of Phosphorus in Freshwater Sediments—A Synthesis of Recent Works. FreseniusJournal of Analytical Chemistry, 370, 224-228.
https://doi.org/10.1007/s002160100753
[14]  Yang, L., Guo, X., Liang, S., Yang, F., Wen, M., Yuan, S., et al. (2023) A Sustainable Strategy for Recovery of Phosphorus as Vivianite from Sewage Sludge via Alkali-Activated Pyrolysis, Water Leaching and Crystallization. Water Research, 233, Article ID: 119769.
https://doi.org/10.1016/j.watres.2023.119769
[15]  Zhao, Y., Ren, Q. and Na, Y. (2019) Potential Utilization of Phosphorus in Fly Ash from Industrial Sewage Sludge Incineration with Biomass. Fuel Processing Technology, 188, 16-21.
https://doi.org/10.1016/j.fuproc.2019.02.005
[16]  Zheng, X., Jiang, Z., Ying, Z., Song, J., Chen, W. and Wang, B. (2020) Role of Feedstock Properties and Hydrothermal Carbonization Conditions on Fuel Properties of Sewage Sludge-Derived Hydrochar Using Multiple Linear Regression Technique. Fuel, 271, Article ID: 117609.
https://doi.org/10.1016/j.fuel.2020.117609
[17]  Guo, Q., Wang, Y., Zhao, L., Yu, F., Zhang, Z., Zhou, N., et al. (2024) Bioavailability Transition Path of Phosphorus Species during the Sewage Sludge Incineration Process. Environmental Research, 247, Article ID: 118167.
https://doi.org/10.1016/j.envres.2024.118167
[18]  Druppel, K., Hosch, A. and Franz, G. (2007) The System Al2O3-P2O5-H2O at Temperatures below 200 ˚C: Experimental Data on the Stability of Variscite and Metavariscite AlPO4·2H2O. American Mineralogist, 92, 1695-1703.
https://doi.org/10.2138/am.2007.2487
[19]  Tosić, M.B. (2003) The Crystallization of Calcium Phosphate Glass with the Ratio. Journal of Materials Science, 38, 1983-1994.
https://doi.org/10.1023/a:1023585321475
[20]  Li, L., Ren, Q., Li, S. and Lu, Q. (2013) Effect of Phosphorus on the Behavior of Potassium during the Co-Combustion of Wheat Straw with Municipal Sewage Sludge. Energy & Fuels, 27, 5923-5930.
https://doi.org/10.1021/ef401196y
[21]  Hu, W., Jin, Z., Qiu, Y., Zhang, P., Feng, Y. and Tang, Y. (2024) Thermochemical Treatment of Fly Ash and Desulfurization Wastewater from Municipal Sewage Sludge Incineration Plant for Phosphorus Recycling. Journal of Cleaner Production, 485, Article ID: 144282.
https://doi.org/10.1016/j.jclepro.2024.144282
[22]  徐杰, 黄群星, 孟详东, 等. 钙基添加剂对污水污泥在水热炭化过程中磷形态及生物有效性的影响[J]. 化工进展, 2020, 40(6): 3507-3514.
[23]  Meng, X., Huang, Q., Gao, H., Tay, K. and Yan, J. (2018) Improved Utilization of Phosphorous from Sewage Sludge (as Fertilizer) after Treatment by Low-Temperature Combustion. Waste Management, 80, 349-358.
https://doi.org/10.1016/j.wasman.2018.09.034

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133