|
水凝胶波导传感器对呼吸丙酮的检测
|
Abstract:
近年来,针对糖尿病的呼吸丙酮(BrAce)检测,新型化学传感器的研发层出不穷。然而,现有的传感器普遍存在以下问题:一方面,操作繁琐,且需配备复杂的样品处理装置;另一方面,要么造价昂贵,要么灵敏度不足,难以满足实际应用的需要。针对上述问题我们提出了一种基于水凝胶波导的BrAce气体传感器。该传感器利用水凝胶的三维多孔结构,高效捕获待测丙酮气体,并使其与波导内部的硫酸羟胺反应生成氢离子(H+),从而引发波导内部pH值的变化。这种pH值的变化进而导致波导内部溴酚蓝吸收光谱发生改变。通过检测溴酚蓝对波导内部传输光的吸收,实现了对健康成年人的BrAce检测。实验表明,该水凝胶波导传感器能够检测出低于0.9 ppm的丙酮气体浓度,而正常人BrAce浓度在0.3~0.9 ppm,能够有效地检测出正常人体内的BrAce气体。该水凝胶波导传感器制备方法简单,成本低廉,灵敏度高,操作简单,能够有效地应对日常生活中的使用场景。
In recent years, various sensors have been developed for the detection of breath acetone (BrAce) in diabete management. However, existing sensors face signification challenges: they are often cumbersome to operate, requiring complex sample-handling devices, or tend to be either expensive or insufficiently sensitive for practical applications. To address these issues, we propose a BrAce gas sensor based on hydrogel waveguides. This sensor leverages the three-dimensional porous structure of hydrogel to efficiently capture acetone gas, which then reacts with hydroxylamine sulfate pre-doped in the waveguide to generate hydrogen ions (H+), thereby triggering a pH change within the waveguide. This change in pH, in turn, alters the absorption spectrum of bromophenol blue within the waveguide. By detecting changes in the absorption spectrum of bromophenol blue, we achieve a highly sensitive BrAce detection. Experimental results demonstrate that the hydrogel waveguide sensor can detect acetone concentrations lower than 0.9 ppm, while the normal BrAce in healthy individuals ranges from 0.3~0.9 ppm. This capability enables effective BrAce detection in healthy individuals. Additionally, the sensor features a simple fabricate process, low cost, high sensitivity and ease of operation, making it permits for everyday use.
[1] | Hao, X., Wu, D., Wang, Y., Ouyang, J., Wang, J., Liu, T., et al. (2019) Gas Sniffer (YSZ-Based Electrochemical Gas Phase Sensor) toward Acetone Detection. Sensors and Actuators B: Chemical, 278, 1-7. https://doi.org/10.1016/j.snb.2018.09.025 |
[2] | Di Natale, C., Macagnano, A., Martinelli, E., Paolesse, R., D’Arcangelo, G., Roscioni, C., et al. (2003) Lung Cancer Identification by the Analysis of Breath by Means of an Array of Non-Selective Gas Sensors. Biosensors and Bioelectronics, 18, 1209-1218. https://doi.org/10.1016/s0956-5663(03)00086-1 |
[3] | Pauling, L., Robinson, A.B., Teranishi, R. and Cary, P. (1971) Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography. Proceedings of the National Academy of Sciences of the United States of America, 68, 2374-2376. https://doi.org/10.1073/pnas.68.10.2374 |
[4] | Wang, C., Mbi, A. and Shepherd, M. (2010) A Study on Breath Acetone in Diabetic Patients Using a Cavity Ringdown Breath Analyzer: Exploring Correlations of Breath Acetone with Blood Glucose and Glycohemoglobin A1C. IEEE Sensors Journal, 10, 54-63. https://doi.org/10.1109/jsen.2009.2035730 |
[5] | Li, C., Kim, K., Fuchigami, T., Asaka, T., Kakimoto, K. and Masuda, Y. (2023) Acetone Gas Sensor Based on Nb2O5 @SnO2 Hybrid Structure with High Selectivity and PPT-Level Sensitivity. Sensors and Actuators B: Chemical, 393, Article ID: 134144. https://doi.org/10.1016/j.snb.2023.134144 |
[6] | Kim, K., Choi, P.G., Itoh, T. and Masuda, Y. (2022) Atomic Step Formation on Porous ZnO Nanobelts: Remarkable Promotion of Acetone Gas Detection up to the Parts per Trillion Level. Journal of Materials Chemistry A, 10, 13839-13847. https://doi.org/10.1039/d2ta02789e |
[7] | Singh, M., Kaur, N., Drera, G., Casotto, A., Sangaletti, L. and Comini, E. (2020) SAM Functionalized ZnO Nanowires for Selective Acetone Detection: Optimized Surface Specific Interaction Using APTMS and GLYMO Monolayers. Advanced Functional Materials, 30, Article ID: 2003217. https://doi.org/10.1002/adfm.202003217 |
[8] | Chuang, M., Lin, Y., Tung, T., Chang, L., Zan, H., Meng, H., et al. (2018) Room-Temperature-Operated Organic-Based Acetone Gas Sensor for Breath Analysis. Sensors and Actuators B: Chemical, 260, 593-600. https://doi.org/10.1016/j.snb.2017.12.168 |
[9] | Majhi, S.M., Ali, A., Greish, Y.E., El-Maghraby, H.F. and Mahmoud, S.T. (2023) V2CTX MXene-Based Hybrid Sensor with High Selectivity and Ppb-Level Detection for Acetone at Room Temperature. Scientific Reports, 13, Article No. 3114. https://doi.org/10.1038/s41598-023-30002-6 |
[10] | Salehi, S., Nikan, E., Khodadadi, A.A. and Mortazavi, Y. (2014) Highly Sensitive Carbon Nanotubes-SnO2 Nanocomposite Sensor for Acetone Detection in Diabetes Mellitus Breath. Sensors and Actuators B: Chemical, 205, 261-267. https://doi.org/10.1016/j.snb.2014.08.082 |
[11] | Obeidat, Y. (2021) The Most Common Methods for Breath Acetone Concentration Detection: A Review. IEEE Sensors Journal, 21, 14540-14558. https://doi.org/10.1109/jsen.2021.3074610 |
[12] | Li, C., Choi, P.G., Kim, K. and Masuda, Y. (2022) High Performance Acetone Gas Sensor Based on Ultrathin Porous Nio Nanosheet. Sensors and Actuators B: Chemical, 367, Article ID: 132143. https://doi.org/10.1016/j.snb.2022.132143 |
[13] | Wang, D., Zhang, F., Prabhakar, A., Qin, X., Forzani, E.S. and Tao, N. (2020) Colorimetric Sensor for Online Accurate Detection of Breath Acetone. ACS Sensors, 6, 450-453. https://doi.org/10.1021/acssensors.0c02025 |
[14] | 谭冰, 蔡斌. 高折射率镀膜聚合物波导传感器的制备[J]. 光学仪器, 2022, 44(1): 87-94. |
[15] | 罗洪, 蔡斌. 水凝胶波导探针的制备及对罗丹明B的超高灵敏检测[J]. 光学仪器, 2024, 46(2): 1-6. |
[16] | Henari, F.Z., Al-Saie, A. and Culligan, K.G. (2012) Optical Limiting Behavior of Bromophenol Blue and Its Dependence on pH. Journal of Nonlinear Optical Physics & Materials, 21, Article ID: 1250015. https://doi.org/10.1142/s0218863512500154 |
[17] | 徐莹莹, 蔡斌. 涂覆高折射率树脂薄膜的聚合物波导传感器的制备[J]. 光学仪器, 2022, 44(6): 80-86. |
[18] | 倪天成, 蔡斌. 基于水凝胶聚合物波导传感器检测盐酸吖啶黄[J]. 光学仪器, 2024, 46(2): 1-6. |
[19] | Marder, S.R., Perry, J.W. and Yakymyshyn, C.P. (1994) Organic Salts with Large Second-Order Optical Nonlinearities. Chemistry of Materials, 6, 1137-1147. https://doi.org/10.1021/cm00044a012 |
[20] | Marder, S.R., Perry, J.W. and Schaefer, W.P. (1989) Synthesis of Organic Salts with Large Second-Order Optical Nonlinearities. Science, 245, 626-628. https://doi.org/10.1126/science.245.4918.626 |
[21] | Tian, T., Cai, B. and Sugihara, O. (2016) DAST Single-Nanometer Crystal Preparation Using a Substrate-Supported Rapid Evaporation Crystallization Method. Nanoscale, 8, 18882-18886. https://doi.org/10.1039/c6nr07378f |
[22] | 许川, 蔡斌. DAST@HP-β-CD超分子体系溶液的多光子泵浦激射[J]. 光学仪器, 2022, 44(2): 51-58. |