|
基于催化发夹自组装技术构建信号放大的电化学生物传感器检测miRNA
|
Abstract:
本研究旨在开发一种基于等温无酶式的催化发夹自组装技术(catalytic hairpin assembly, CHA)构建新型信号放大的电化学生物传感器,以DNA为模版制备的银纳米簇(DNA-AgNCs)作为信号探针,特异性的检测miRNA。首先研究选择以let-7a miRNA为分析对象,设计一对与目标物let-7a miRNA部分碱基互补的发夹链H1和H2,其中H1链富含胞嘧啶,可作为模板合成具有良好导电性的DNA-AgNCs,而H2则被设计为端基带有氨基的发夹结构,作为捕获探针H2能够借助Au-NH键,修饰在经过纳米金修饰的玻碳电极(dpAu/GCE)表面,实现对目标物let-7a miRNA的特异性识别与捕获。当目标物let-7a miRNA和DNA-AgNCs滴涂在修饰电极表面时,H1和H2发夹打开,引发CHA反应,将导电性能好的DNA-AgNCs (荧光基团)修饰在电极表面,可显著增强的电流信号。实验结果表明,该生物传感器在50 pM~1 μM浓度范围内,对let-7a miRNA具有良好的线性响应,测限低至16.67 pM,且具有优异的特异性,为电化学生物传感器在miRNA检测领域的应用提供了新的策略。
This study aims to develop a novel electrochemical biosensor with signal amplification based on isothermal enzyme-free catalytic hairpin assembly (CHA) technology. Silver nanoclusters prepared using DNA as a template (DNA-AgNCs) are used as signal probes to specifically detect miRNA. Firstly, let-7a miRNA is selected as the analysis object. A pair of hairpin strands H1 and H2 that are partially complementary to the target let-7a miRNA in terms of base sequence are designed. Among them, strand H1 is rich in cytosine and can serve as a template for synthesizing DNA-AgNCs with good electrical conductivity. Hairpin strand H2 is designed to have an amino group at the end. As a capture probe, H2 can be modified on the surface of a glassy carbon electrode modified with gold nanoparticles (dpAu/GCE) through the Au-NH bond, enabling specific recognition and capture of the target let-7a miRNA. When the target let-7a miRNA and DNA-AgNCs are drop-coated on the surface of the modified electrode, hairpins H1 and H2 open, triggering the CHA reaction. DNA-AgNCs (fluorescent groups) with good electrical conductivity are modified on the electrode surface, which can significantly enhance the current signal. The experimental results show that this biosensor exhibits a good linear response to let-7a miRNA within the concentration range of 50 pM to 1000 nM, with a detection limit as low as 16.67 pM, and has excellent specificity. It provides a new strategy for the application of electrochemical biosensors in the field of miRNA detection.
[1] | Kamalidehghan, B., Habibi, M., Afjeh, S.S., Shoai, M., Alidoost, S., Almasi Ghale, R., et al. (2020) The Importance of Small Non-Coding RNAs in Human Reproduction: A Review Article. The Application of Clinical Genetics, 13, 1-11. https://doi.org/10.2147/tacg.s207491 |
[2] | Chen, K. and Rajewsky, N. (2007) The Evolution of Gene Regulation by Transcription Factors and MicroRNAs. Nature Reviews Genetics, 8, 93-103. https://doi.org/10.1038/nrg1990 |
[3] | Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005) MicroRNA Expression Profiles Classify Human Cancers. Nature, 435, 834-838. https://doi.org/10.1038/nature03702 |
[4] | Porkka, K.P., Pfeiffer, M.J., Waltering, K.K., Vessella, R.L., Tammela, T.L.J. and Visakorpi, T. (2007) MicroRNA Expression Profiling in Prostate Cancer. Cancer Research, 67, 6130-6135. https://doi.org/10.1158/0008-5472.can-07-0533 |
[5] | Mellis, D. and Caporali, A. (2017) MicroRNA-Based Therapeutics in Cardiovascular Disease: Screening and Delivery to the Target. Biochemical Society Transactions, 46, 11-21. https://doi.org/10.1042/bst20170037 |
[6] | Snowhite, I.V., Allende, G., Sosenko, J., Pastori, R.L., Messinger Cayetano, S. and Pugliese, A. (2017) Association of Serum Micrornas with Islet Autoimmunity, Disease Progression and Metabolic Impairment in Relatives at Risk of Type 1 Diabetes. Diabetologia, 60, 1409-1422. https://doi.org/10.1007/s00125-017-4294-3 |
[7] | 李敬文. 基于银纳米簇和核酸等温扩增策略的microRNA检测[D]: [硕士学位论文]. 济南: 济南大学, 2022. |
[8] | Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E.F. and Hellens, R.P. (2007) Protocol: A Highly Sensitive RT-PCR Method for Detection and Quantification of MicroRNAs. Plant Methods, 3, 12. https://doi.org/10.1186/1746-4811-3-12 |
[9] | Freeman, W.M., Walker, S.J. and Vrana, K.E. (1999) Quantitative RT-PCR: Pitfalls and Potential. BioTechniques, 26, 112-125. https://doi.org/10.2144/99261rv01 |
[10] | Gerry, N.P., Witowski, N.E., Day, J., Hammer, R.P., Barany, G. and Barany, F. (1999) Universal DNA Microarray Method for Multiplex Detection of Low Abundance Point Mutations. Journal of Molecular Biology, 292, 251-262. https://doi.org/10.1006/jmbi.1999.3063 |
[11] | Workman, C., Jensen, L.J., Jarmer, H., Berka, R., Gautier, L., et al. (2002) A New Non-Linear Normalization Method for Reducing Variability in DNA Microarray Experiments. Genome Biology, 3, Article No. research0048.1. https://doi.org/10.1186/gb-2002-3-9-research0048 |
[12] | He, S.L. and Green, R. (2013) Northern Blotting. Methods in Enzymology, 530, 75-87. https://doi.org/10.1016/b978-0-12-420037-1.00003-8 |
[13] | Yin, P., Choi, H.M.T., Calvert, C.R. and Pierce, N.A. (2008) Programming Biomolecular Self-Assembly Pathways. Nature, 451, 318-322. https://doi.org/10.1038/nature06451 |
[14] | Li, B., Jiang, Y., Chen, X. and Ellington, A.D. (2012) Probing Spatial Organization of DNA Strands Using Enzyme-Free Hairpin Assembly Circuits. Journal of the American Chemical Society, 134, 13918-13921. https://doi.org/10.1021/ja300984b |
[15] | Duan, Z., Li, Z., Dai, J., He, H. and Xiao, D. (2017) Nucleotide Base Analog Pyrrolo-Deoxycytidine as Fluorescent Probe Signal for Enzyme-Free and Signal Amplified Nucleic Acids Detection. Talanta, 164, 34-38. https://doi.org/10.1016/j.talanta.2016.10.079 |
[16] | Li, Q., Zeng, F., Lyu, N. and Liang, J. (2018) Highly Sensitive and Specific Electrochemical Biosensor for Microrna-21 Detection by Coupling Catalytic Hairpin Assembly with Rolling Circle Amplification. The Analyst, 143, 2304-2309. https://doi.org/10.1039/c8an00437d |
[17] | Chen, C., Li, N., Lan, J., Ji, X. and He, Z. (2016) A Label-Free Colorimetric Platform for DNA via Target-Catalyzed Hairpin Assembly and the Peroxidase-Like Catalytic of Graphene/Au-NPs Hybrids. Analytica Chimica Acta, 902, 154-159. https://doi.org/10.1016/j.aca.2015.10.030 |
[18] | Xu, H. and Suslick, K.S. (2010) Water‐Soluble Fluorescent Silver Nanoclusters. Advanced Materials, 22, 1078-1082. https://doi.org/10.1002/adma.200904199 |