|
过渡金属催化亚甲基环丙烷硅硼化反应的进展
|
Abstract:
有机硅/硼化合物在合成化学、新药研发及功能材料领域应用广泛,因此过渡金属催化的亚甲基环丙烷(Methylenecylopropanes, MCPs)直接硅硼化反应成为研究热点。该反应虽具有条件温和、高效及原子经济性高等优点,但多样选择性问题是其发展的主要挑战。本文系统总结了过渡金属催化MCPs的反应及其选择性硅硼化机理,为设计新型不饱和C-C键硅硼化反应提供理论依据,助力高官能度有机硅/硼化合物的选择性合成。
Organosilicon/boron compounds are widely used in synthetic chemistry, new drug development, and functional materials, making the transition metal-catalyzed direct silylborylation of methylenecyclopropanes (MCPs) a research hotspot. Although this reaction offers advantages such as mild conditions, high efficiency, and excellent atom economy, the issue of diverse selectivity remains a major challenge for its development. This paper systematically summarizes the reactions of transition metal-catalyzed MCPs and the mechanisms of selective silylborylation, providing a theoretical foundation for designing novel unsaturated C-C bond silylborylation reactions and facilitating the selective synthesis of highly functionalized organosilicon/boron compounds.
[1] | Brandi, A. and Goti, A. (1998) Synthesis of Methylene-and Alkylidenecyclopropane Derivatives. Chemical Reviews, 98, 589-636. https://doi.org/10.1021/cr940341t |
[2] | Hassall, C.H. and Reyle, K. (1955) Hypoglycin a and b, Two Biologically Active Polypeptides from Blighia sapida. Biochemical Journal, 60, 334-339. https://doi.org/10.1042/bj0600334 |
[3] | Gray, D. and Fowden, L. (1962) α-(Methylenecyclopropyl)glycine from Litchi Seeds. Biochemical Journal, 82, 385-389. https://doi.org/10.1042/bj0820385 |
[4] | Nemoto, T., Ojika, M. and Sakagami, Y. (1997) Amphimic Acids, Novel Unsaturated C28 Fatty Acids as DNA Topoisomerase I Inhibitors from an Australian Sponge Amphimedon Sp. Tetrahedron Letters, 38, 5667-5670. https://doi.org/10.1016/s0040-4039(97)01234-3 |
[5] | Wiberg, K.B. and Fenoglio, R.A. (1968) Heats of Formation of C4H6 Hydrocarbons. Journal of the American Chemical Society, 90, 3395-3397. https://doi.org/10.1021/ja01015a018 |
[6] | Johnson, W.T.G. and Borden, W.T. (1997) Why Are Methylenecyclopropane and 1-Methylcylopropene More “Strained” than Methylcyclopropane? Journal of the American Chemical Society, 119, 5930-5933. https://doi.org/10.1021/ja9638061 |
[7] | Roth, W.R. and Quast, M. (1998) The Barrier to Rotation about the Double Bond in Methylenecyclopropane. European Journal of Organic Chemistry, 1998, 763-768. https://doi.org/10.1002/(sici)1099-0690(199805)1998:5<763::aid-ejoc763>3.0.co;2-f |
[8] | Fumagalli, G., Stanton, S. and Bower, J.F. (2017) Recent Methodologies That Exploit C-C Single-Bond Cleavage of Strained Ring Systems by Transition Metal Complexes. Chemical Reviews, 117, 9404-9432. https://doi.org/10.1021/acs.chemrev.6b00599 |
[9] | Yu, L., Liu, M., Chen, F. and Xu, Q. (2015) Heterocycles from Methylenecyclopropanes. Organic & Biomolecular Chemistry, 13, 8379-8392. https://doi.org/10.1039/c5ob00868a |
[10] | Huang, L., Arndt, M., Gooßen, K., Heydt, H. and Gooßen, L.J. (2015) Late Transition Metal-Catalyzed Hydroamination and Hydroamidation. Chemical Reviews, 115, 2596-2697. https://doi.org/10.1021/cr300389u |
[11] | Müller, T.E., Hultzsch, K.C., Yus, M., Foubelo, F. and Tada, M. (2008) Hydroamination: Direct Addition of Amines to Alkenes and Alkynes. Chemical Reviews, 108, 3795-3892. https://doi.org/10.1021/cr0306788 |
[12] | Huang, J. and Ho, C. (2020) NHC/Nickel(II)‐Catalyzed [3+2] Cross‐Dimerization of Unactivated Olefins and Methylenecyclopropanes. Angewandte Chemie International Edition, 59, 5288-5292. https://doi.org/10.1002/anie.201914542 |
[13] | Concepción, E. Da., Fernµndez, I., Mascareńas, J. L. & López. F. (2021) Highly Enantioselective Cobalt-Catalyzed (3+2) cy-Cloadditions of Alkynylidenecyclopropanes. Angewandte Chemie International Edition, 60, Article No. 8182. |
[14] | Nakamura, I., Oh, B.H., Saito, S. and Yamamoto, Y. (2001) Novel [3+2] Cycloaddition of Alkylidenecyclopropanes with Aldehydes Catalyzed by Palladium. Angewandte Chemie International Edition, 40, 1298-1300. https://doi.org/10.1002/1521-3773(20010401)40:7<1298::aid-anie1298>3.3.co;2-w |
[15] | Delgado, A., Rodríguez, J.R., Castedo, L. and Mascareñas, J.L. (2003) Palladium-Catalyzed [3+2] Intramolecular Cycloaddition of Alk-5-Ynylidenecyclopropanes: A Rapid, Practical Approach to Bicyclo[3.3.0]octenes. Journal of the American Chemical Society, 125, 9282-9283. https://doi.org/10.1021/ja0356333 |
[16] | García‐Fandiño, R., Gulías, M., Castedo, L., Granja, J.R., Mascareñas, J.L. and Cárdenas, D.J. (2007) Palladium‐Catalysed [3+2] Cycloaddition of Alk‐5‐Ynylidenecyclopropanes to Alkynes: A Mechanistic DFT Study. Chemistry—A European Journal, 14, 272-281. https://doi.org/10.1002/chem.200700973 |
[17] | Lautens, M., Kumanovic, S. and Meyer, C. (1996) Heterogeneous Palladium‐Catalyzed Regioselective Hydrostannation of Alkenes. Angewandte Chemie International Edition in English, 35, 1329-1330. https://doi.org/10.1002/anie.199613291 |
[18] | Lautens, M., Meyer, C. and Lorenz, A. (1996) Ring Opening in the Hydrostannation of Methylenecyclopropanes: Effect of the Catalyst and Substrate. Journal of the American Chemical Society, 118, 10676-10677. https://doi.org/10.1021/ja962582j |
[19] | Nishihara, Y., Itazaki, M. and Osakada, K. (2002) Platinum Complex-Catalyzed Hydrosilylation of 2,2-Diaryl-1-Methylenecyclopropane Affording (Silylmethyl)cyclopropane. Tetrahedron Letters, 43, 2059-2061. https://doi.org/10.1016/s0040-4039(02)00165-x |
[20] | Medina, J.M., Kang, T., Erbay, T.G., Shao, H., Gallego, G.M., Yang, S., et al. (2019) Cu-Catalyzed Hydroboration of Benzylidenecyclopropanes: Reaction Optimization, (Hetero)aryl Scope, and Origins of Pathway Selectivity. ACS Catalysis, 9, 11130-11136. https://doi.org/10.1021/acscatal.9b03557 |
[21] | Tsukada, N., Shibuya, A., Nakamura, I. and Yamamoto, Y. (1997) Ring Opening in the Palladium-Catalyzed Hydrocarbonation of Methylenecyclopropanes with Pronucleophiles. Journal of the American Chemical Society, 119, 8123-8124. https://doi.org/10.1021/ja970261h |
[22] | Tsukada, N., Shibuya, A., Nakamura, I., Kitahara, H. and Yamamoto, Y. (1999) Inter-and Intramolecular Palladium-Catalyzed Hydrocarbonation of Methylenecyclopropanes with Carbon Pronucleophiles. Tetrahedron, 55, 8833-8844. https://doi.org/10.1016/s0040-4020(99)00447-0 |
[23] | Siriwardana, A.I., Kamada, M., Nakamura, I. and Yamamoto, Y. (2005) Palladium-Catalyzed Addition of Nitrogen Pronucleophiles to Alkylidenecyclopropanes. The Journal of Organic Chemistry, 70, 5932-5937. https://doi.org/10.1021/jo050700s |
[24] | Nakamura, I., Itagaki, H. and Yamamoto, Y. (2001) Palladium-Catalyzed Inter-and Intramolecular Hydroamination of Methylenecy-Clopropanes with Amines. Chemistry of Heterocyclic Compounds, 12, 1532-1540. |
[25] | Liu, Y., Ogunlana, A.A. and Bao, X. (2018) Mechanistic Insights into Pd(0)-Catalyzed Intermolecular and Intramolecular Hydroamination of Methylenecyclopropanes: A Computational Study. Dalton Transactions, 47, 5660-5669. https://doi.org/10.1039/c8dt00131f |
[26] | Camacho, D.H., Nakamura, I., Saito, S. and Yamamoto, Y. (1999) Palladium-Catalyzed Hydroalkoxylation of Methylenecyclopropanes. Angewandte Chemie International Edition, 38, 3365-3367. https://doi.org/10.1002/(sici)1521-3773(19991115)38:22<3365::aid-anie3365>3.0.co;2-5 |
[27] | Chen, K., Zhu, Z., Liu, J., Tang, X., Wei, Y. and Shi, M. (2016) Substrate-Controlled Rh(II)-Catalyzed Single-Electron-Transfer (SET): Divergent Synthesis of Fused Indoles. Chemical Communications, 52, 350-353. https://doi.org/10.1039/c5cc07292a |
[28] | Xu, B., Chen, Y. and Shi, M. (2002) The Reactions of Thiols and Diphenyldisulfide with Terminally Substituted Methylenecyclopropanes. Tetrahedron Letters, 43, 2781-2784. https://doi.org/10.1016/s0040-4039(02)00384-2 |
[29] | Legrand, N., Quiclet-Sire, B. and Zard, S.Z. (2000) Radical Addition to Strained Olefins: A Flexible Access to Small Ring Derivatives. Tetrahedron Letters, 41, 9815-9818. https://doi.org/10.1016/s0040-4039(00)01777-9 |
[30] | Skancke, A., Schaad, L.J. and Hess, B.A. (1988) Location of the Transition Structure for a Concerted Pathway in the Methylenecyclopropane Rearrangement. Journal of the American Chemical Society, 110, 5315-5316. https://doi.org/10.1021/ja00224a013 |
[31] | Dunkelblum, E. (1973) Addition Reactions to Methylenecyclopropanes II: Electrophilic Additions of Diphenylmethylenecyclopropane. Israel Journal of Chemistry, 11, 557-566. https://doi.org/10.1002/ijch.197300050 |
[32] | Schonk, R.M., Bakker, B.H. and Cerfontain, H. (1991) Reactions of Alkenes and Ω-Phenylalkenes with Sulfur Trioxide; Sulfonation and Friedel-Crafts Type of Cyclization. Phosphorus, Sulfur, and Silicon and the Related Elements, 59, 173-176. https://doi.org/10.1080/10426509108045717 |
[33] | Dunkelblum, E. (1974) Addition Reactions to Methylenecyclopropanes—III: The Reaction of 2,4-Dinitrobenzenesulfenyl Chloride with Alkylidenecyclopropanes. Tetrahedron, 30, 3991-3996. https://doi.org/10.1016/s0040-4020(01)97374-0 |
[34] | Chatani, N., Takeyasu, T. and Hanafusa, T. (1988) Palladium-and Nickel-Catalyzed Reaction of Methylenecyclopropanes with Trimethylsilyl Cyanide1. Tetrahedron Letters, 29, 3979-3982. https://doi.org/10.1016/s0040-4039(00)80398-6 |
[35] | Suginome, M., Matsuda, T. and Ito, Y. (2000) Palladium-and Platinum-Catalyzed Silaboration of Methylenecyclopropanes through Selective Proximal or Distal C-C Bond Cleavage. Journal of the American Chemical Society, 122, 11015-11016. https://doi.org/10.1021/ja002885k |
[36] | Ohmura, T., Taniguchi, H., Kondo, Y. and Suginome, M. (2007) Palladium-Catalyzed Asymmetric Silaborative C-C Cleavage of meso-methylenecyclopropanes. Journal of the American Chemical Society, 129, 3518-3519. https://doi.org/10.1021/ja0703170 |
[37] | Ohmura, T., Taniguchi, H. and Suginome, M. (2009) Kinetic Resolution of Racemic 1-Alkyl-2-Methylenecyclopropanes via Palladium-Catalyzed Silaborative C-C Cleavage. Organic Letters, 11, 2880-2883. https://doi.org/10.1021/ol900829c |
[38] | Akai, Y., Yamamoto, T., Nagata, Y., Ohmura, T. and Suginome, M. (2012) Enhanced Catalyst Activity and Enantioselectivity with Chirality-Switchable Polymer Ligand Pqxphos in Pd-Catalyzed Asymmetric Silaborative Cleavage of meso-Methylenecyclopropanes. Journal of the American Chemical Society, 134, 11092-11095. https://doi.org/10.1021/ja303506k |
[39] | Ohmura, T., Taniguchi, H. and Suginome, M. (2015) Site-and Regioselective Silaborative C-C Cleavage of 1-Alkyl-2-Methylenecyclopropanes Using a Platinum Catalyst with a Sterically Demanding Silylboronic Ester. ACS Catalysis, 5, 3074-3077. https://doi.org/10.1021/acscatal.5b00513 |
[40] | Ishiyama, T., Momota, S. and Miyaura, N. (1999) Platinum(0)-Catalyzed Diboration of Methylenecyclopropanes with Bis(pinacolato)diboron: A Selective Route to 2,4-bis(boryl)-1-butenes. Synlett, 1999, 1790-1792. https://doi.org/10.1055/s-1999-2957 |
[41] | Chen, Q., Zhang, X., Su, S., Xu, Z., Li, N., Li, Y., et al. (2018) Nanoporous Gold-Catalyzed Diboration of Methylenecyclopropanes via a Distal Bond Cleavage. ACS Catalysis, 8, 5901-5906. https://doi.org/10.1021/acscatal.8b01193 |
[42] | Wang, W., Lu, K., Liu, P., Zeng, H., Yang, L., Ma, A., et al. (2024) Regioselective 1,n-Diborylation of Alkylidenecyclopropanes Enabled by Catalysis with a Spirocyclic NHC IrIII Pincer Complex. ACS Catalysis, 14, 5156-5166. https://doi.org/10.1021/acscatal.4c00260 |