|
基于碳点的四环素荧光检测
|
Abstract:
本文以柠檬酸和尿素为原料,通过微波法一步制备出荧光性能良好的碳点(CDs)。基于四环素与CDs之间的相互作用,构建了一种特异性检测四环素的荧光探针。采用紫外–可见吸收光谱和荧光光谱对CDs和四环素进行表征,发现四环素的紫外吸收光谱与CDs的荧光激发光谱之间存在的重叠区域,可能是由于CDs与四环素之间产生了荧光内滤效应(IFE)导致CDs荧光猝灭。讨论荧光体系溶剂组成、pH等单变量因素对CDs荧光猝灭效果的影响,在最佳检测条件下探究CDs荧光强度与四环素浓度之间的线性关系。实验结果表明,四环素的检出限为1.1 × 10?9 mol/L。该方法选择性好、灵敏度高,在特异性检测四环素领域具有较好前景。
In this paper, carbon dots (CDs) with good fluorescence properties were prepared in one step by microwave method using citric acid and urea as raw materials. Based on the fluorescence quenching of CDs by tetracycline, a fluorescence probe was constructed to detect tetracycline specifically. CDs and tetracycline were characterized by UV-VIS absorption spectra and fluorescence spectra. It was found that the UV absorption spectra of tetracycline overlapped with the fluorescence excitation spectra of CDs to a large extent, which may be due to the fluorescence internal filtration effect (IFE) between CDs and tetracycline. The influence of univariate factors such as solvent composition and pH on the fluorescence quenching effect of CDs was discussed, and the linear relationship between fluorescence intensity of CDs and tetracycline concentration was investigated under the optimal detection conditions. The experimental results showed that the detection limit of tetracycline was 1.1 × 10?9 mol/L. The method has good selectivity and high sensitivity, and has a good prospect in the field of specific detection of tetracycline.
[1] | Amangelsin, Y., Semenova, Y., Dadar, M., Aljofan, M. and Bjørklund, G. (2023) The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics, 12, Article 440. https://doi.org/10.3390/antibiotics12030440 |
[2] | Pérez-Rodríguez, M., Pellerano, R.G., Pezza, L. and Pezza, H.R. (2018) An Overview of the Main Foodstuff Sample Preparation Technologies for Tetracycline Residue Determination. Talanta, 182, 1-21. https://doi.org/10.1016/j.talanta.2018.01.058 |
[3] | Chang, D., Mao, Y., Qiu, W., Wu, Y. and Cai, B. (2023) The Source and Distribution of Tetracycline Antibiotics in China: A Review. Toxics, 11, Article 214. https://doi.org/10.3390/toxics11030214 |
[4] | Gab-Allah, M.A., Lijalem, Y.G., Yu, H., Lim, D.K., Ahn, S., Choi, K., et al. (2023) Accurate Determination of Four Tetracycline Residues in Chicken Meat by Isotope Dilution-Liquid Chromatography/Tandem Mass Spectrometry. Journal of Chromatography A, 1691, Article 463818. https://doi.org/10.1016/j.chroma.2023.463818 |
[5] | Zhang, T., Zhang, X., Yu, J., Hu, H., He, P., Li, Z., et al. (2024) Rapid Determination of Tetracyclines in Drinking and Environmental Waters Using Fully Automatic Solid-Phase Extraction with Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules, 29, Article 2921. https://doi.org/10.3390/molecules29122921 |
[6] | Li, P., Rao, D., Wang, Y. and Hu, X. (2022) Adsorption Characteristics of Polythiophene for Tetracyclines and Determination of Tetracyclines in Fish and Chicken Manure by Solid Phase Extraction-HPLC Method. Microchemical Journal, 173, Article 106935. https://doi.org/10.1016/j.microc.2021.106935 |
[7] | Butovskaya, E., Carrillo Heredero, A.M., Segato, G., Faggionato, E., Borgia, M., Marchis, D., et al. (2024) Quantitative Determination of Tetracyclines in Medicated Feed for Food-Producing Animals by HPLC-DAD. Food Additives & Contaminants: Part A, 41, 601-609. https://doi.org/10.1080/19440049.2024.2341115 |
[8] | Liu, Y., Luo, Y., Li, W., Xu, X., Wang, B., Xu, X., et al. (2024) Current Analytical Strategies for the Determination of Quinolone Residues in Milk. Food Chemistry, 430, Article 137072. https://doi.org/10.1016/j.foodchem.2023.137072 |
[9] | Astudillo, D., Pokrant, E., Bravo, C., Ríos, A., Navarrete, M.J., Maddaleno, A., et al. (2023) Detection of Antimicrobial Residues in Animal Manure by a Microbiological Screening Methodology: A Non-Invasive Tool in Animal Production. Food Control, 148, Article 109649. https://doi.org/10.1016/j.foodcont.2023.109649 |
[10] | Dai, P., Zhang, Y., Hong, Y., Xiong, J., Du, H., Duan, L., et al. (2023) Production of High Affinity Monoclonal Antibody and Development of Indirect Competitive Chemiluminescence Enzyme Immunoassay for Gentamicin Residue in Animal Tissues. Food Chemistry, 400, Article 134067. https://doi.org/10.1016/j.foodchem.2022.134067 |
[11] | Adabi, M., Reza Faryabi, M., Nili-Ahmadabadi, A., Gharekhani, J. and Mehri, F. (2022) Evaluation of Tetracycline Antibiotics Residues in Chicken Tissues Using the Four-Plate Test, ELISA, and HPLC Methods in Iran. International Journal of Environmental Analytical Chemistry, 104, 2014-2023. https://doi.org/10.1080/03067319.2022.2054710 |
[12] | Besharati, M., Hamedi, J., Hosseinkhani, S. and Saber, R. (2019) A Novel Electrochemical Biosensor Based on TetX2 Monooxygenase Immobilized on a Nano-Porous Glassy Carbon Electrode for Tetracycline Residue Detection. Bioelectrochemistry, 128, 66-73. https://doi.org/10.1016/j.bioelechem.2019.02.010 |
[13] | Kareem, A., Thenmozhi, K., Hari, S., Ponnusamy, V.K. and Senthilkumar, S. (2024) Metal-Free Carbon-Based Anode for Electrochemical Degradation of Tetracycline and Metronidazole in Wastewater. Chemosphere, 351, Article 141219. https://doi.org/10.1016/j.chemosphere.2024.141219 |
[14] | 杨杰, 杨学山, 马晓彤. 微波法制备荧光碳量子点及其对牛奶中四环素的快速检测[J]. 食品与发酵科技, 2022, 58(5): 111-117, 141. |
[15] | Wang, B. and Lu, S. (2022) The Light of Carbon Dots: From Mechanism to Applications. Matter, 5, 110-149. https://doi.org/10.1016/j.matt.2021.10.016 |
[16] | Liu, J., Li, R. and Yang, B. (2020) Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Central Science, 6, 2179-2195. https://doi.org/10.1021/acscentsci.0c01306 |
[17] | Alafeef, M., Srivastava, I., Aditya, T. and Pan, D. (2023) Carbon Dots: From Synthesis to Unraveling the Fluorescence Mechanism. Small, 20, Article ID: 2303937. https://doi.org/10.1002/smll.202303937 |
[18] | Sun, Z., Zhou, W., Luo, J., Fan, J., Wu, Z., Zhu, H., et al. (2022) High-Efficient and pH-Sensitive Orange Luminescence from Silicon-Doped Carbon Dots for Information Encryption and Bio-Imaging. Journal of Colloid and Interface Science, 607, 16-23. https://doi.org/10.1016/j.jcis.2021.08.188 |
[19] | Arul, V., Chandrasekaran, P., Sivaraman, G. and Sethuraman, M.G. (2023) Biogenic Preparation of Undoped and Heteroatoms Doped Carbon Dots: Effect of Heteroatoms Doping in Fluorescence, Catalytic Ability and Multicolour in-vitro Bio-Imaging Applications—A Comparative Study. Materials Research Bulletin, 162, Article 112204. https://doi.org/10.1016/j.materresbull.2023.112204 |
[20] | Wang, X., Xu, L., Ge, S., Foong, S.Y., Liew, R.K., Fong Chong, W.W., et al. (2023) Biomass-Based Carbon Quantum Dots for Polycrystalline Silicon Solar Cells with Enhanced Photovoltaic Performance. Energy, 274, Article 127354. https://doi.org/10.1016/j.energy.2023.127354 |
[21] | Cheruku, R., Kim, J.H., Krishna, V.B.M. and Periyat, P. (2023) Photo-Electrodes Decorated with Carbon Quantum Dots: Efficient Dye-Sensitized Solar Cells. Results in Engineering, 20, Article 101611. https://doi.org/10.1016/j.rineng.2023.101611 |
[22] | Lu, J., Shi, Y., Chen, Z., Sun, X., Yuan, H., Guo, F., et al. (2023) Photothermal Effect of Carbon Dots for Boosted Photothermal-Assisted Photocatalytic Water/Seawater Splitting into Hydrogen. Chemical Engineering Journal, 453, Article 139834. https://doi.org/10.1016/j.cej.2022.139834 |
[23] | Singh, P., Rani, N., Kumar, S., Kumar, P., Mohan, B., Pallavi, et al. (2023) Assessing the Biomass-Based Carbon Dots and Their Composites for Photocatalytic Treatment of Wastewater. Journal of Cleaner Production, 413, Article 137474. https://doi.org/10.1016/j.jclepro.2023.137474 |
[24] | Ji, C., Xu, W., Han, Q., Zhao, T., Deng, J. and Peng, Z. (2023) Light of Carbon: Recent Advancements of Carbon Dots for LEDs. Nano Energy, 114, Article 108623. https://doi.org/10.1016/j.nanoen.2023.108623 |
[25] | Limbu, S. and Singh, L.R. (2024) Exploring Luminescent Color Tunability and Efficient Energy Transfer Mechanism of a Single-Phased Hexagonal Nanophosphor for White Light Emitting Diodes (WLEDs) Application. Journal of Alloys and Compounds, 970, Article 172580. https://doi.org/10.1016/j.jallcom.2023.172580 |
[26] | Manayil Parambil, A., Nabeel Mattath, M., Rajamani, P., Pham, P.V., Kumar, G. and Ponnusamy, V.K. (2023) Biogenic Fluorescent Carbon Dots Modulated Fabrication of Concatenate Logic Library and Pattern-Mediated Molecular Keypad Lock for Chemical Sensing Application. Chemical Engineering Journal, 463, Article 142354. https://doi.org/10.1016/j.cej.2023.142354 |
[27] | Xu, L., Bai, X., Guo, L., Yang, S., Jin, P. and Yang, L. (2019) Facial Fabrication of Carbon Quantum Dots (CDs)-Modified N-TiO2-X Nanocomposite for the Efficient Photoreduction of Cr(VI) under Visible Light. Chemical Engineering Journal, 357, 473-486. https://doi.org/10.1016/j.cej.2018.09.172 |
[28] | Rajendran, S., Zichri, S.B., Usha Vipinachandran, V., Jelinek, R. and Bhunia, S.K. (2021) Triphenylphosphonium‐Derived Bright Green Fluorescent Carbon Dots for Mitochondrial Targeting and Rapid Selective Detection of Tetracycline. ChemNanoMat, 7, 545-552. https://doi.org/10.1002/cnma.202100125 |
[29] | Gao, W., Song, H., Wang, X., Liu, X., Pang, X., Zhou, Y., et al. (2017) Carbon Dots with Red Emission for Sensing of Pt2+, Au3+, and Pd2+ and Their Bioapplications in vitro and in vivo. ACS Applied Materials & Interfaces, 10, 1147-1154. https://doi.org/10.1021/acsami.7b16991 |
[30] | Shan, X., Chai, L., Ma, J., Qian, Z., Chen, J. and Feng, H. (2014) B-Doped Carbon Quantum Dots as a Sensitive Fluorescence Probe for Hydrogen Peroxide and Glucose Detection. The Analyst, 139, 2322-2325. https://doi.org/10.1039/c3an02222f |
[31] | He, Y., Li, X., Yao, G., Fang, S., Yu, H., Zou, T., et al. (2024) Microwave-Assisted Preparation of Yellow Fluorescent Graphitic Carbon Nitride Quantum Dots for Trace Tetracycline-Specific Detection. Chemosphere, 362, Article 142863. https://doi.org/10.1016/j.chemosphere.2024.142863 |
[32] | Xu, Y., Tang, C., Huang, H., Sun, C., Zhang, Y., Ye, Q., et al. (2014) Green Synthesis of Fluorescent Carbon Quantum Dots for Detection of Hg2+. Chinese Journal of Analytical Chemistry, 42, 1252-1258. https://doi.org/10.1016/s1872-2040(14)60765-9 |
[33] | 邓祥, 黄小梅, 邓子禾, 等. 新型碳量子点荧光探针的制备及其对Mn2+的选择性检测[J]. 激光与光电子学进展, 2024, 61(15): 1-8. |
[34] | Sadhu, V.A., Park, T.J. and Kailasa, S.K. (2024) Synthesis of Green Fluorescent Carbon Dots Using Cysteine and Maltose as Ecofriendly Ligands for the Detection of Venlafaxine Anti-Depression Drug in Pharmaceutical and Plasma Samples. Inorganic Chemistry Communications, 168, Article 112980. https://doi.org/10.1016/j.inoche.2024.112980 |
[35] | 梁美琪, 王子涵, 刘洋, 等. 基于锰、氯、氮共掺杂碳点的光学双模和智能手机成像检测Cr(Ⅵ) [J]. 分析测试学报, 2024, 43(1): 182-190 |
[36] | Liu, Y., Cheng, D., Wang, B., Yang, J., Hao, Y., Tan, J., et al. (2024) Carbon Dots‐Inked Paper with Single/Two‐Photon Excited Dual‐Mode Thermochromic Afterglow for Advanced Dynamic Information Encryption. Advanced Materials, 36, Article ID: 2403775. https://doi.org/10.1002/adma.202403775 |
[37] | Ren, H., Labidi, A., Gao, T., Padervand, M., Liang, X. and Wang, C. (2024) Efficient Conversion of Bio-Waste Lignin into High-Value Fluorescent Nitrogen-Modified Carbon Quantum Dots for Live-Cell Imaging. Industrial Crops and Products, 216, Article 118832. https://doi.org/10.1016/j.indcrop.2024.118832 |
[38] | Lodha, S.R., Gore, A.H., Merchant, J.G., Pillai, A.J., Patel, H.P., Maulvi, F.A., et al. (2024) Selective Detection of Azelnidipine in Pharmaceuticals via Carbon Dot Mediated Spectrofluorimetric Method: A Green Approach. Luminescence, 39, e4738. https://doi.org/10.1002/bio.4738 |
[39] | Ullal, N., Sahoo, B., Sunil, D., Kulkarni, S.D., Bhat K., U. and P. J., A. (2024) Yellow Emissive and High Fluorescence Quantum Yield Carbon Dots from Perylene-3,4,9,10-Tetracarboxylic Dianhydride for Anticounterfeiting Applications. Dalton Transactions, 53, 16287-16302. https://doi.org/10.1039/d4dt02219j |
[40] | Krushna, B.R.R., Sandeep, D.H., Manjunatha, K., Sharma, S.C., Panda, M., Krithika, C., et al. (2024) Sustainable Latent Fingerprint Enhancement with Ink-Free Printing and Shape Memory Behavior Using Parthenium Hysterophorus-Derived Carbon Dots. Sustainable Materials and Technologies, 40, e00951. https://doi.org/10.1016/j.susmat.2024.e00951 |
[41] | Ma, Y., Mao, L., Cui, C., Hu, Y., Chen, Z., Zhan, Y., et al. (2024) Nitrogen-Doped Carbon Dots as Fluorescent Probes for Sensitive and Selective Determination of Fe3+. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 316, Article 124347. https://doi.org/10.1016/j.saa.2024.124347 |
[42] | Rahmatian, N., Abbasi, S., Abbasi, N. and Tavakkoli Yaraki, M. (2024) Alginate-Carbon Dot Nanocomposite: A Green Approach Towards Designing Turn-On Aptasenor for Candida Albicans Fungus. International Journal of Biological Macromolecules, 282, Article 137315. https://doi.org/10.1016/j.ijbiomac.2024.137315 |
[43] | Qiu, H.X., Zhang, Z. and Wang, Y.C. (2021) Research Progress on Carbon Dots Phosphor Applied in Light-Emitting Diode Devices. Journal of University of Shanghai for Science and Technology, 43, 140-147. |
[44] | Jozefowicza, M., Heldt, J.R., Karolczak, J. and Heldt, J. (2003) Fluorescence Quenching and Solvation Processes of Fluorenone and 4-Hydroxyfluorenone in Binary Solvents. Zeitschrift für Naturforschung A, 58, 144-156. https://doi.org/10.1515/zna-2003-2-312 |
[45] | Wang, B., Gu, C., Jiao, Y., Gao, Y., Liu, X., Guo, J., et al. (2023) Novel Preparation of Red Fluorescent Carbon Dots for Tetracycline Sensing and Its Application in Trace Determination. Talanta, 253, Article 123975. https://doi.org/10.1016/j.talanta.2022.123975 |
[46] | Miao, J., Ji, W., Yu, J., Cheng, J., Huang, Y., Arabi, M., et al. (2023) A Triple-Emission Ratiometric Fluorescence Sensor Based on Carbon Dots-Au Nanoclusters Nanocomposite for Detection of Tetracycline. Sensors and Actuators B: Chemical, 384, Article 133636. https://doi.org/10.1016/j.snb.2023.133636 |
[47] | Li, T., Guo, G., Xing, H., Wang, Y., Luo, X., Wang, L., et al. (2023) Energy Transfer Mediated Rapid and Visual Discrimination of Tetracyclines and Quercetin in Food by Using N, Cu Co-Doped Carbon Dots. Analytica Chimica Acta, 1239, Article 340706. https://doi.org/10.1016/j.aca.2022.340706 |
[48] | Zhang, J., Zhou, R., Tang, D., Hou, X. and Wu, P. (2019) Optically-Active Nanocrystals for Inner Filter Effect-Based Fluorescence Sensing: Achieving Better Spectral Overlap. TrAC Trends in Analytical Chemistry, 110, 183-190. https://doi.org/10.1016/j.trac.2018.11.002 |
[49] | 谢勇, 韩明杰, 徐钰豪, 等. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460. |