|
基于华为昇腾平台的人工智能人才培养模式研究与实践
|
Abstract:
随着人工智能(AI)技术的迅猛发展,对专业人才的需求日益增长。论文以天津师范大学电子与通信工程学院/人工智能学院与华为昇腾平台的合作为例,探讨国产化AI人才培养模式的研究与实践。论文首先分析了国内外AI人才培养的现状,指出国内教育存在课程体系理论化、实践资源不足等问题;其次,阐述了华为昇腾平台在全面开发支持、高性能计算、开放生态及教育资源整合等方面的技术优势;进而提出“课程体系–教学方法–师资建设–实践平台”的人才培养模式,包括融合昇腾技术的专业课程设计、项目驱动与案例教学法、校企协同的师资培养,以及基于“众智计划”与竞赛的实践体系。实践表明,该模式有效提升了学生的工程能力与国产技术应用水平。
With the rapid development of artificial intelligence (AI) technology, the demand for AI professionals has been growing significantly. This paper takes the collaboration between College of Electronic and Communication Engineering/College of Artificial Intelligence of Tianjin Normal University and Huawei’s Ascend platform as a case study to explore the research and practice of cultivating domestic AI talent. The paper first analyzes the current state of AI talent cultivation domestically and internationally, pointing out issues in China’s education system such as overly theoretical curricula and insufficient practical resources. Secondly, it elaborates on the technical advantages of Huawei’s Ascend platform, including comprehensive development support, high-performance computing capabilities, an open ecosystem, and integrated educational resources. Building on this foundation, the paper proposes a talent cultivation model encompassing “curriculum system-teaching methods-faculty development-practical platforms”. This model includes: professional course design integrated with Ascend technology, project-driven and case-based teaching approaches, industry-academia collaborative faculty development, and a practical system based on Huawei’s “Collective Intelligence Plan” and competition platforms. The practice has demonstrated that this model effectively enhances students’ engineering competencies and proficiency in domestic technology applications.
[1] | 张海生. 我国高校人工智能人才培养: 问题与策略[J]. 高校教育管理, 2020, 14(2): 37-43, 96. |
[2] | 眭依凡, 幸泰杞. 人才培养模式创新: 人工智能时代大学的紧迫课题[J]. 中国高教研究, 2024(3): 8-16, 21. |
[3] | 董英帅, 曲嘉瑄. 人工智能化背景下高校人才培养的创新策略[J]. 产业创新研究, 2022, 95(18): 197-199. |
[4] | 宋杰, 朱松豪, 吴丹萍, 等. 基于昇腾AI生态的深度学习教学新模式[J]. 计算机教育, 2023(9): 143-147, 152. |
[5] | The Select Committee on Artificial Intelligence of the National Science & Technology Council (2023) The National Artificial Intelligence Research and Development Strategic Plan: 2019 Update. https://catalog.data.gov/dataset/the-national-artificial-intelligence-research-and-development-strategic-plan-2019-update |
[6] | Computing Community Consortium (CCC) and Association for the Advancement of Artificial Intelligence (AAAI) (2019) A 20-Year Community Roadmap for Artificial Intelligence Research in the US. https://cra.org/ccc/wp-content/uploads/sites/2/2019/08/Community-Roadmap-for-AI-Research.pdf |
[7] | Select Committee on Artificial Intelligence (2018) AI in the UK: Ready, Willing and Able. https://publications.parliament.uk/pa/ld201719/ldselect/ldai/100/100.pdf |
[8] | Hall, D.W. and Pesenti, J. (2017) Growing the Artificial Intelligence Industry in the UK. https://www.gov.uk/government/publications/growing-the-artificial-intelligence-industry-in-the-uk |
[9] | 国务院. 新一代人工智能发展规划[EB/OL]. 2017-07-20. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm, 2025-04-16. |
[10] | 教育部. 高等学校人工智能创新行动计划[EB/OL]. 2018-04-02. http://www.moe.gov.cn/srcsite/A16/s7062/201804/t20180410_332722.html, 2025-04-16. |
[11] | 李海峰, 王炜. 国际领域“人工智能 + 教育”的研究进展与前沿热点——兼论我国“人工智能 + 教育”的发展策略[J]. 远程教育杂志, 2019, 37(2): 65-75. |
[12] | 胡小方, 张里博. 创新型人工智能人才培养的教学体系探究与改革[J]. 中国新通信, 2023, 25(6): 46-48. |
[13] | 刘泽君, 范兴容. 高校人工智能专业师资队伍建设若干问题思考[J]. 教育现代化, 2019, 6(94): 117-119. |