全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

泸定地震典型滑坡震后快速形变监测研究
Post-Earthquake Rapid Deformation Monitoring of Typical Landslides Triggered by the Luding Ms6.8 Earthquake

DOI: 10.12677/jsta.2025.133053, PP. 537-550

Keywords: 泸定地震,地震滑坡,快速形变监测,SBAS-InSAR,HyP3 SAR数据
Luding Earthquake
, Earthquake-Induced Landslide, Rapid Deformation Monitoring, SBAS-InSAR, HyP3 SAR Data

Full-Text   Cite this paper   Add to My Lib

Abstract:

地震滑坡是地震诱发的主要次生灾害之一,具有突发性强、持续性长等特点,对震后区域安全构成严重威胁。为实现震后滑坡的高效监测,本文以2022年四川泸定Ms6.8级地震为背景,选取典型滑坡区域,利用HyP3在线SAR数据,结合MintPy时序InSAR技术,构建了震后滑坡形变快速监测流程。针对传统InSAR方法中存在的解缠误差积累、参考点选取不合理和噪声干扰等问题,本文引入闭合相位法评估解缠误差,结合水体掩膜剔除潜在误差区域,并通过残差相位均方根(RMS)与中值绝对偏差(MAD)优化参考日期选取,从而提高了形变监测的精度与稳定性。结果显示,H1与H2两个典型滑坡区在地震后均表现出持续沉降特征,最大沉降速率分别达?13.2 cm/年和?16.7 cm/年,累积沉降量分别为?11.87 cm和?12.29 cm,滑坡体中部及坡脚变形显著,反映出滑坡体存在长期蠕动或进一步失稳的风险。研究表明,相比传统处理方式,HyP3-MintPy流程显著提高了数据处理效率和自动化程度,适用于震后应急滑坡监测的快速响应需求。
Earthquake-induced landslides are among the most significant secondary hazards caused by seismic events, characterized by sudden onset and long-term persistence, posing serious threats to post-earthquake regional safety. To achieve efficient monitoring of post-seismic landslides, this study takes the 2022 Luding Ms6.8 earthquake in Sichuan, China as the research background. Typical landslide areas were selected, and a rapid deformation monitoring workflow was constructed by integrating HyP3 online SAR data with MintPy time-series InSAR techniques. To address challenges in traditional InSAR processing—such as error accumulation during phase unwrapping, suboptimal reference point selection, and noise interference—this study employed the closure phase method to assess unwrapping errors, applied water body masking to eliminate potential error-prone areas, and used root mean square (RMS) of residual phases along with median absolute deviation (MAD) to optimize the selection of reference dates. These measures improved the accuracy and stability of deformation monitoring. Results show that both H1 and H2 typical landslide zones exhibited sustained post-seismic subsidence, with maximum deformation rates of ?13.2 cm/year and ?16.7 cm/year, and cumulative displacements of ?11.87 cm and ?12.29 cm, respectively. Significant deformation was concentrated in the central and lower parts of the landslide bodies, indicating prolonged creeping or potential instability. The study demonstrates that, compared with traditional processing methods, the HyP3-MintPy workflow significantly enhances data processing efficiency and automation, making it suitable for rapid-response monitoring of landslides in post-earthquake scenarios.

References

[1]  范宣梅, 王欣, 戴岚欣, 等. 2022年MS6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J]. 工程地质学报, 2022, 30(5): 1504-1516.
[2]  杨成生, 李晓阳, 张勤, 等. 基于InSAR技术的尼泊尔辛杜帕尔乔克区震后滑坡监测与分析[J]. 武汉大学学报(信息科学版), 2023, 48(10): 1684-1696.
[3]  李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022, 47(6): 887-897.
[4]  冯文凯, 顿佳伟, 易小宇, 等. 基于SBAS-InSAR技术的金沙江流域沃达村巨型老滑坡形变分析[J]. 工程地质学报, 2020, 28(2): 384-393.
[5]  付豪, 李为乐, 陆会燕, 等. 基于“三查”体系的丹巴县滑坡隐患早期识别与监测[J]. 武汉大学学报(信息科学版), 2024, 49(5): 734-746.
[6]  Hogenson, K., Arko, S.A., Buechler, B., et al. (2016) Hybrid Pluggable Processing Pipeline (HyP3): A Cloud-Based Infrastructure for Generic Processing of SAR Data. In: AGU Fall Meeting Abstracts.
https://ui.adsabs.harvard.edu/abs/2016AGUFMIN21B1740H/
[7]  Yunjun, Z., Fattahi, H. and Amelung, F. (2019) Small Baseline InSAR Time Series Analysis: Unwrapping Error Correction and Noise Reduction. Computers & Geosciences, 133, Article 104331.
https://doi.org/10.1016/j.cageo.2019.104331
[8]  Wang, S., Zhang, G., Chen, Z., et al. (2022) Surface Deformation Extraction from Small Baseline Subset Synthetic Aperture Radar Interferometry (SBAS-InSAR) Using Coherence-Optimized Baseline Combinations. GIScience & Remote Sensing, 59, 295-309.
https://doi.org/10.1080/15481603.2022.2026639

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133