|
基于双层微结构的纸基压阻传感器制备及多功能应用
|
Abstract:
随着柔性电子器件的快速发展,对纸基压阻传感器的性能要求不断提高,柔性纸基压阻传感器在未来的发展重点是高灵敏度、快速响应时间、宽测量范围和低功耗等方面。此外,为了满足不同的应用场景需求,这些传感器还需要具备可弯曲、可拉伸和可穿戴等特性。然而随着对先进技术的不断追求,柔性传感器也面临着一些挑战,这些设备必须兼顾高灵敏度、耐用性和快速响应时间,同时克服传统纸质基底的局限性,在这种条件下,叉指电极的出现提高纸基压阻传感器传感性能的一种很有前途的解决方案。本研究提出了一种结合单宁酸原位还原和微波诱导技术制备高性能纸基压阻传感器的新方法。以硝酸银为晶种,直接在纸纤维上合成了不同尺寸的银纳米粒子。该传感器采用双层结构,以石墨叉指电极为导电基底,显著提高了灵敏度和稳定性。传感性能测试表明:其压力响应范围为1.4~310 kPa,其中,在1.4~26 kPa的范围内,灵敏度为6.193 kPa?1,在27~165 kPa的范围内,灵敏度为0.215 kPa?1,在166~310 kPa的范围内,灵敏度为0.043 kPa?1。它具有200 ms的快速响应时间和400 ms的恢复时间,以及出色的耐用性,在20,000次循环中保持稳定的性能。这种耐用性归功于单宁酸的粘附性能,它可以将导电材料牢固地原位还原在纸纤维上而不会脱落,从而增强了传感器的长期稳定性。这些特性的结合使该传感器成为下一代柔性电子应用的有前途的候选者。
With the rapid advancement of flexible electronic devices, the performance requirements for paper-based piezoresistive sensors are becoming increasingly stringent. Future developments in flexible paper-based piezoresistive sensors will focus on achieving high sensitivity, fast response times, wide measurement ranges and low power consumption, etc. Additionally, to cater to diverse application scenarios, these sensors must incorporate characteristics such as bendability, stretchability and wearability. However, as the demand for advanced technologies grows, flexible sensors face several challenges. These devices must balance high sensitivity, durability and rapid response times while overcoming the limitations of traditional paper substrates. Under these conditions, the appearance of interdigital electrodes has emerged as a promising solution to enhance the sensing performance of paper-based piezoresistive sensors. The study proposes a novel approach to fabricate a high-performance paper-based piezoresistive sensor by combining tannic acid in-situ reduction and microwave-induced techniques. Silver nanoparticles of varying sizes are synthesized directly on paper fibers using silver nitrate as the seed crystal. The sensor is constructed using a double-layer architecture with graphite interdigital electrodes as the conductive base, significantly improving sensitivity and stability. The sensing performance tests showed that the pressure response ranges were from 1.4 to 310 kPa, with a sensitivity of 6.193 kPa?1 at 1.4 and 26 kPa, 0.215 kPa?1 between 27 and 165 kPa, and 0.043 kPa?1 from 166 to 310 kPa. It demonstrates a fast
[1] | Chen, Y., Wang, S., Liu, Y., Deng, H., Gao, H., Cao, M., et al. (2024) Ultra-Low Cost and High-Performance Paper-Based Flexible Pressure Sensor for Artificial Intelligent E-Skin. Chemical Engineering Journal, 499, Article ID: 156293. https://doi.org/10.1016/j.cej.2024.156293 |
[2] | Wang, Q., Li, Y., Xu, Q., Yu, H., Zhang, D., Zhou, Q., et al. (2023) Finger-Coding Intelligent Human-Machine Interaction System Based on All-Fabric Ionic Capacitive Pressure Sensors. Nano Energy, 116, Article ID: 108783. https://doi.org/10.1016/j.nanoen.2023.108783 |
[3] | Huang, C., Xiao, M., Li, Z., Fu, Z. and Shi, R. (2024) Bioinspired Breathable Biodegradable Bioelastomer-Based Flexible Wearable Electronics for High-Sensitivity Human-Interactive Sensing. Chemical Engineering Journal, 486, Article ID: 150013. https://doi.org/10.1016/j.cej.2024.150013 |
[4] | Shi, Z., Meng, L., Shi, X., et al. (2022) Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications. Nano-Micro Letters, 14, 141. |
[5] | Luo, J., Gao, W. and Wang, Z.L. (2021) The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports. Advanced Materials, 33, Article ID: 2004178. https://doi.org/10.1002/adma.202004178 |
[6] | Xiong, X., Liang, J. and Wu, W. (2023) Principle and Recent Progress of Triboelectric Pressure Sensors for Wearable Applications. Nano Energy, 113, Article ID: 108542. https://doi.org/10.1016/j.nanoen.2023.108542 |
[7] | Guo, Y., Zeng, S., Liu, Q., Sun, J., Zhu, M., Li, L., et al. (2024) Review of the Pressure Sensor Based on Graphene and Its Derivatives. Microelectronic Engineering, 288, Article ID: 112167. https://doi.org/10.1016/j.mee.2024.112167 |
[8] | Matsukawa, R., Kobayashi, D., Mitsui, H. and Ikuno, T. (2020) Environment-Friendly Paper-Based Flexible Pressure Sensors with Carbon Nanotubes and Liquid Metal. Applied Physics Express, 13, Article ID: 027001. https://doi.org/10.7567/1882-0786/ab658b |
[9] | Jiang, C., Lv, R., Zou, Y. and Peng, H. (2024) Flexible Pressure Sensor with Wide Pressure Range Based on 3D Microporous PDMS/MWCNTs for Human Motion Detection. Microelectronic Engineering, 283, Article ID: 112105. https://doi.org/10.1016/j.mee.2023.112105 |
[10] | Xu, X., Wang, R., Nie, P., Cheng, Y., Lu, X., Shi, L., et al. (2017) Copper Nanowire-Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor. ACS Applied Materials & Interfaces, 9, 14273-14280. https://doi.org/10.1021/acsami.7b02087 |
[11] | Kim, C., Ahn, H. and Ji, T. (2020) Flexible Pressure Sensors Based on Silicon Nanowire Array Built by Metal-Assisted Chemical Etching. IEEE Electron Device Letters, 41, 1233-1236. https://doi.org/10.1109/led.2020.3001977 |
[12] | Gao, L., Yu, J., Li, Y., Wang, P., Shu, J., Deng, X., et al. (2020) An Ultrahigh Sensitive Paper-Based Pressure Sensor with Intelligent Thermotherapy for Skin-Integrated Electronics. Nanomaterials, 10, Article 2536. https://doi.org/10.3390/nano10122536 |
[13] | Cao, E., Duan, W., Wang, F., Wang, A. and Zheng, Y. (2017) Natural Cellulose Fiber Derived Hollow-Tubular-Oriented Polydopamine: In-Situ Formation of Ag Nanoparticles for Reduction of 4-Nitrophenol. Carbohydrate Polymers, 158, 44-50. https://doi.org/10.1016/j.carbpol.2016.12.004 |
[14] | Wang, Z., Xu, C., Li, X. and Liu, Z. (2015) In Situ Green Synthesis of Ag Nanoparticles on Tea Polyphenols-Modified Graphene and Their Catalytic Reduction Activity of 4-Nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 485, 102-110. https://doi.org/10.1016/j.colsurfa.2015.09.015 |
[15] | Cai, Z., He, X., Wang, K., Hou, X., Mei, Y., Ying, L., et al. (2023) Enhancing Performance of GaN/Ga2O3 P‐N Junction Uvc Photodetectors via Interdigitated Structure. Small Methods, 8, Article ID: 2301148. https://doi.org/10.1002/smtd.202301148 |
[16] | He, J., Zhou, Y., Zhang, Y., Hu, K., Han, L., Qi, Y., et al. (2025) Research on the Performance of Flexible Piezoresistive Sensors Based on Ag@MXene-PVA Composite Hydrogel. In: Song, H., Xu, M., Yang, L. and Zhang, L., Eds., Advances in Printing, Packaging and Communication Technologies, Springer, 452-459. https://doi.org/10.1007/978-981-96-4467-4_52 |
[17] | Li, Z., Xie, X., Xiao, J., Zeng, Y. and Huang, Y. (2025) Development of Highly Sensitive and Stable Patterned PDMS Flexible Strain Sensors for Motion Monitoring via Laser Direct Writing. Optics & Laser Technology, 182, Article ID: 112212. https://doi.org/10.1016/j.optlastec.2024.112212 |
[18] | Chen, G., Zhang, X., Sun, Z., Luo, X., Fang, G., Wu, H., et al. (2025) Sandwich-Structured Flexible Strain Sensors for Gesture Recognition in Human-Computer Interaction. The European Physical Journal Special Topics. https://doi.org/10.1140/epjs/s11734-025-01560-9 |
[19] | Zhao, W., Natsuki, J., Dinh Trung, V., Li, H., Tan, J., Yang, W., et al. (2024) AgNPs/CNTs Modified Nonwoven Fabric for PET-Based Flexible Interdigitated Electrodes in Pressure Sensor Applications. Chemical Engineering Journal, 499, Article ID: 156252. https://doi.org/10.1016/j.cej.2024.156252 |
[20] | Muhammad, W. and Kim, S. (2023) Flexible Bending Sensors Fabricated with Interdigitated Electrode Structures Cross-Linked by Transition Metal Doped ZnO Nanorods. Chemosensors, 11, Article 529. https://doi.org/10.3390/chemosensors11100529 |
[21] | Lee, S., Nam, K., Muhammad, W., Shin, D., Seo, S. and Kim, S. (2022) Influence of N2O Plasma Treatment on Pet-Based Flexible Bending Sensors with ZnO Nanorod Array Cross-Linked with Interdigitated Electrode Structures. Ceramics International, 48, 25696-25704. https://doi.org/10.1016/j.ceramint.2022.05.177 |
[22] | Ali Khan, M.U., Raad, R., Tubbal, F., Theoharis, P.I., Liu, S. and Foroughi, J. (2021) Bending Analysis of Polymer-Based Flexible Antennas for Wearable, General IoT Applications: A Review. Polymers, 13, Article 357. https://doi.org/10.3390/polym13030357 |
[23] | 郭闯. 基于纳米银/炭黑的导电硅胶的设计及其在柔性传感器中的应用研究[D]: [硕士学位论文]. 长春: 吉林大学材料系, 2024. |