|
基于人工神经网络的沥青路面纵向裂缝演化预测
|
Abstract:
目的:预测沥青路面道路在长期服役条件下的纵向裂缝长度。方法:本研究从长期路面性能数据库中选择和处理与纵向裂缝发展相关的影响因素,建立人工神经网络预测模型,研究模型参数对精度的影响。结果:建立的模型R2为0.804,预测效果较好。结论:人工神经网络能较好预测沥青路面纵向裂缝的发展,能为预防性养护提供支持。
Purpose: This paper aims to predict the longitudinal crack length of asphalt pavement under long-term service conditions. Method: In this paper, the influencing factors related to the development of longitudinal cracks were selected and processed from the long-term pavement performance database, an artificial neural network prediction model was established, and the effect of model parameters on accuracy was studied. Result: The R2 of the established model was 0.804, and the prediction effect was good. Conclusion: Artificial neural network can better predict the development of longitudinal cracks in asphalt pavement, and can provide support for preventive maintenance.
[1] | 沈金安. 沥青及沥青混合料路用性能[M]. 北京: 人民交通出版社, 2003. |
[2] | 谭忆秋. 沥青及沥青混合料[M]. 哈尔滨: 哈尔滨工业大学出版社, 2000. |
[3] | Queiroz, C. (1983) A Mechanistic Analysis of Asphalt Pavement Performance in Brazil. Journal of Association of Asphalt Paving Technology, 52, 474-488. |
[4] | Sood, V.K., Sharma, B.M., Kanchan, P.K., et al. (1994) Pavement Deterioration Modeling in India. Proceedings of the Third International Conference on Managing Pavements, San Antonio, 22-26 May 1994, 47-54. |
[5] | Jackson, N.C., Deighton, R. and Huft, D.L. (1996) Development of Pavement Performance Curves for Individual Distress Indexes in South Dakota Based on Expert Opinion. Transportation Research Record: Journal of the Transportation Research Board, 1524, 130-136. https://doi.org/10.1177/0361198196152400115 |
[6] | 潘旺, 严世涛, 李双蓓. 基于灰色理论的沥青路面裂缝预测模型研究[J]. 中外公路, 2020, 40(3): 54-60. |
[7] | Lou, Z., Gunaratne, M., Lu, J.J. and Dietrich, B. (2001) Application of Neural Network Model to Forecast Short-Term Pavement Crack Condition: Florida Case Study. Journal of Infrastructure Systems, 7, 166-171. https://doi.org/10.1061/(asce)1076-0342(2001)7:4(166) |
[8] | Gong, H., Sun, Y. and Huang, B. (2019) Gradient Boosted Models for Enhancing Fatigue Cracking Prediction in Mechanistic-Empirical Pavement Design Guide. Journal of Transportation Engineering, Part B: Pavements, 145, Article ID: 04019014. https://doi.org/10.1061/jpeodx.0000121 |
[9] | Karlaftis, A.G. and Badr, A. (2015) Predicting Asphalt Pavement Crack Initiation Following Rehabilitation Treatments. Transportation Research Part C: Emerging Technologies, 55, 510-517. https://doi.org/10.1016/j.trc.2015.03.031 |
[10] | 谭冰心. 基于GRNN监督学习的混凝土路面开裂破损率预测[J]. 内蒙古煤炭经济, 2021(10): 229-230. |
[11] | 柯文豪, 陈华鑫, 雷宇, 张涛. 基于GRNN神经网络的沥青路面裂缝预测方法[J]. 深圳大学学报(理工版), 2017, 34(4): 378-384. |
[12] | 卓金武. MATLAB在数学建模中的应用[M]. 北京: 北京航空航天大学出版社, 2014. |