|
黄喉拟水龟幼龟对温度驯化的热生理生化响应
|
Abstract:
温度是自然界中重要的生态因子,对生物的行为表现、生理生化反应等生命活动都会产生重要的影响。动物可通过温度驯化调整自身行为表现和生理生化反应以应对外界环境温度的影响,然而目前关于温度驯化对外温动物的影响还存在争议。黄喉拟水龟(Mauremys mutica)是中国重要的淡水养殖龟类,本研究以黄喉拟水龟为实验对象,将二龄幼龟置于24℃、28℃和32℃中驯化30天,测定温度驯化对其生长、热耐受性、超氧化物歧化酶(SOD)活力和丙二醛(MDA)含量的影响。结果显示:驯化温度显著影响幼龟生长率、耐受低温(CTMin)和耐受高温(CTMax),幼龟体重、背甲长、背甲宽、CTMin和CTMax随着驯化温度的升高而增大;耐受温度范围随着驯化温度升高呈现下降趋势,但驯化温度不影响耐受温度范围。驯化温度显著影响心肌组织的SOD活力,对骨骼肌和肝脏无显著影响;驯化温度显著影响骨骼肌中MDA含量,对心肌和肝脏组织无显著影响。温度驯化会影响黄喉拟水龟幼龟的生长和耐受温度,在一定的温度范围内符合热有益假说(Warmer is Better Hypothesis),同时会影响机体的抗氧化能力。
Temperature is a key ecological factor in nature, significantly influencing an organism’s behavior, physiological processes, and biochemical activities. Animals adjust their behaviors and physiological responses through thermal acclimation to cope with environmental temperature variations. However, the effects of thermal acclimation on ectotherms remain contentious. In this study, two-year-old juvenile Mauremys mutica were used as experimental subjects. They were acclimated to temperatures of 24?C, 28?C, and 32?C for 30 days to systematically evaluate the effects of thermal acclimation on growth, thermal tolerance, and antioxidative parameters. The results demonstrated that acclimation temperature significantly influenced growth rate, critical thermal minimum (CTMin), and critical thermal maximum (CTMax). Body mass, carapace length, carapace width, CTMin, and CTMax increased with rising acclimation temperatures. Although the thermal tolerance range narrowed at higher temperatures, no significant differences were observed in the range itself. Acclimation temperature markedly affected SOD activity in cardiac tissue, while no significant changes were noted in skeletal muscle or liver. Similarly, MDA content was significantly altered in skeletal muscle but remained unaffected in cardiac and liver tissues. Thermal acclimation affects the growth and thermal tolerance of juvenile M. mutica, aligning with the “Warmer is Better Hypothesis” within a specific temperature range. It also alters the organism’s antioxidative capacity, highlighting the physiological trade-offs associated with temperature adaptation.
[1] | Garcia, R.A., Cabeza, M., Rahbek, C. and Araújo, M.B. (2014) Multiple Dimensions of Climate Change and Their Implications for Biodiversity. Science, 344, Article ID: 1247579. https://doi.org/10.1126/science.1247579 |
[2] | Sinervo, B., Lara Reséndiz, R.A., Miles, D.B., Lovich, J.E., Rosen, P.C., Gadsden, H., et al. (2024) Climate Change and Collapsing Thermal Niches of Desert Reptiles and Amphibians: Assisted Migration and Acclimation Rescue from Extirpation. Science of the Total Environment, 908, Article ID: 168431. https://doi.org/10.1016/j.scitotenv.2023.168431 |
[3] | Seebacher, F., White, C.R. and Franklin, C.E. (2014) Physiological Plasticity Increases Resilience of Ectothermic Animals to Climate Change. Nature Climate Change, 5, 61-66. https://doi.org/10.1038/nclimate2457 |
[4] | Angilletta Jr., M.J. (2009) Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198570875.001.1 |
[5] | Black, I.R.G., Berman, J.M., Cadena, V. and Tattersall, G.J. (2019) Behavioral Thermoregulation in Lizards. In: Bels, V. and Russell, A., Eds., Behavior of Lizards, CRC Press, 13-46. https://doi.org/10.1201/9781498782739-2 |
[6] | Wilson, R.S. and Franklin, C.E. (2002) Testing the Beneficial Acclimation Hypothesis. Trends in Ecology & Evolution, 17, 66-70. https://doi.org/10.1016/s0169-5347(01)02384-9 |
[7] | White, E., Kim, S., Wegh, G. and Chiari, Y. (2024) Thermal Tolerance Plasticity and Dynamics of Thermal Tolerance in Eublepharis macularius: Implications for Future Climate-Driven Heat Stress. Journal of Thermal Biology, 123, Article ID: 103912. https://doi.org/10.1016/j.jtherbio.2024.103912 |
[8] | Lu, H., Hu, Y., Li, S., Dang, W. and Zhang, Y. (2020) Acclimatory Responses of Thermal Physiological Performances in Hatchling Yellow Pond Turtles (Mauremys mutica). Animal Biology, 70, 55-65. https://doi.org/10.1163/15707563-20191106 |
[9] | Bury, S., Bury, A., Sadowska, E.T., Cichoń, M. and Bauchinger, U. (2019) More than Just the Numbers—Contrasting Response of Snake Erythrocytes to Thermal Acclimation. The Science of Nature, 106, Article No. 24. https://doi.org/10.1007/s00114-019-1617-x |
[10] | Woods, H.A. and Harrison, J.F. (2002) Interpreting Rejections of the Beneficial Acclimation Hypothesis: When is Physiological Plasticity Adaptive? Evolution, 56, 1863-1866. https://doi.org/10.1111/j.0014-3820.2002.tb00201.x |
[11] | Huey, R.B., Berrigan, D., Gilchrist, G.W. and Herron, J.C. (1999) Testing the Adaptive Significance of Acclimation: A Strong Inference Approach. American Zoologist, 39, 323-336. https://doi.org/10.1093/icb/39.2.323 |
[12] | 黄艳, 彭敏锐, 夏继刚. 温度对中华倒刺鲃不同生理生态性能的影响:驯化有益假说的验证[J]. 生态学报, 2021, 41(6): 2496-2504. |
[13] | 陆洪良, 耿军, 徐卫, 等. 东方蝾螈幼体热耐受性和游泳表现的热驯化响应[J]. 生态学报, 2017, 37(5): 1603-1610. |
[14] | Dallas, J.W. (2023) Physiological, Ecological, and Microbial Factors Shaping Thermal Tolerance and Performance in Ectothermic Vertebrates. Ph.D. Thesis, Southern Illinois University Carbondale. |
[15] | Carilo Filho, L.M., Gomes, L., Katzenberger, M., Solé, M. and Orrico, V.G.D. (2022) There and Back Again: A Meta-Analytical Approach on the Influence of Acclimation and Altitude in the Upper Thermal Tolerance of Amphibians and Reptiles. Frontiers in Ecology and Evolution, 10, Article 1017255. https://doi.org/10.3389/fevo.2022.1017255 |
[16] | 夏继刚, 黄艳, 付世建, 等. 斑马鱼热耐受性对温度驯化的响应及其性别差异[J]. 生态学杂志, 2019, 38(8): 2477-2481. |
[17] | Odetti, L.M., Paravani, E.V., Simoniello, M.F. and Poletta, G.L. (2022) The Role of Superoxide Dismutase in Reptiles under Toxicity Contexts. Nova Science Publishers. |
[18] | Tsikas, D. (2017) Assessment of Lipid Peroxidation by Measuring Malondialdehyde (MDA) and Relatives in Biological Samples: Analytical and Biological Challenges. Analytical Biochemistry, 524, 13-30. https://doi.org/10.1016/j.ab.2016.10.021 |
[19] | Ye, C., Bo, Z., Baojun, S., Yong, W. and Weiguo, D. (2011) Between-Population Variation in Body Size and Growth Rate of Hatchling Asian Yellow Pond Turtles, Mauremys mutica. The Herpetological Journal, 21, 113-116. |
[20] | Gong, S., Chow, A.T., Fong, J.J. and Shi, H. (2009) The Chelonian Trade in the Largest Pet Market in China: Scale, Scope and Impact on Turtle Conservation. Oryx, 43, 213-216. https://doi.org/10.1017/s0030605308000902 |
[21] | Zhao, B., Chen, Y., Lu, H., Zeng, Z. and Du, W. (2014) Latitudinal Differences in Temperature Effects on the Embryonic Development and Hatchling Phenotypes of the Asian Yellow Pond Turtle, Mauremys mutica. Biological Journal of the Linnean Society, 114, 35-43. https://doi.org/10.1111/bij.12400 |
[22] | Du, W., Wang, L. and Shen, J. (2010) Optimal Temperatures for Egg Incubation in Two Geoemydid Turtles: Ocadia sinensis and Mauremys mutica. Aquaculture, 305, 138-142. https://doi.org/10.1016/j.aquaculture.2010.03.032 |
[23] | Saro, C., Mateo, J., Caro, I., Carballo, D.E., Fernández, M., Valdés, C., et al. (2020) Effect of Dietary Crude Protein on Animal Performance, Blood Biochemistry Profile, Ruminal Fermentation Parameters and Carcass and Meat Quality of Heavy Fattening Assaf Lambs. Animals, 10, Article 2177. https://doi.org/10.3390/ani10112177 |
[24] | Kingsolver, J.G. and Huey, R.B. (2008) Size, Temperature, and Fitness: Three Rules. Evolutionary Ecology Research, 10, 251-268. |
[25] | Niu, X., Ding, Y., Chen, S., Gooneratne, R. and Ju, X. (2022) Effect of Immune Stress on Growth Performance and Immune Functions of Livestock: Mechanisms and Prevention. Animals, 12, Article 909. https://doi.org/10.3390/ani12070909 |
[26] | Ibarrola, I., Arranz, K., Markaide, P. and Navarro, E. (2022) Metabolic Size Scaling Reflects Growth Performance Effects on Age-Size Relationships in Mussels (Mytilus galloprovincialis). PLOS ONE, 17, e0268053. https://doi.org/10.1371/journal.pone.0268053 |
[27] | Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M. and Charnov, E.L. (2001) Effects of Size and Temperature on Metabolic Rate. Science, 293, 2248-2251. https://doi.org/10.1126/science.1061967 |
[28] | Ligon, D.B., Peterson, C.C. and Lovern, M.B. (2012) Acute and Persistent Effects of Pre‐ and Posthatching Thermal Environments on Growth and Metabolism in the Red‐Eared Slider Turtle, Trachemys scripta elegans. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 317, 227-235. https://doi.org/10.1002/jez.1716 |
[29] | Stahlschmidt, Z.R., Jodrey, A.D. and Luoma, R.L. (2015) Consequences of Complex Environments: Temperature and Energy Intake Interact to Influence Growth and Metabolic Rate. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 187, 1-7. https://doi.org/10.1016/j.cbpa.2015.04.007 |
[30] | Guderley, H. and Seebacher, F. (2010) Thermal Acclimation, Mitochondrial Capacities and Organ Metabolic Profiles in a Reptile (Alligator mississippiensis). Journal of Comparative Physiology B, 181, 53-64. https://doi.org/10.1007/s00360-010-0499-1 |
[31] | Feder, M.E. and Hofmann, G.E. (1999) Heat-Shock Proteins, Molecular Chaperones, and the STRESS response: Evolutionary and Ecological Physiology. Annual Review of Physiology, 61, 243-282. https://doi.org/10.1146/annurev.physiol.61.1.243 |
[32] | Xu, W., Dang, W., Geng, J. and Lu, H. (2015) Thermal Preference, Thermal Resistance, and Metabolic Rate of Juvenile Chinese Pond Turtles Mauremys reevesii Acclimated to Different Temperatures. Journal of Thermal Biology, 53, 119-124. https://doi.org/10.1016/j.jtherbio.2015.09.003 |
[33] | Wu, M., Hu, L., Dang, W., Lu, H. and Du, W. (2013) Effect of Thermal Acclimation on Thermal Preference, Resistance and Locomotor Performance of Hatchling Soft-Shelled Turtle. Current Zoology, 59, 718-724. https://doi.org/10.1093/czoolo/59.6.718 |
[34] | Gunderson, A.R. and Stillman, J.H. (2015) Plasticity in Thermal Tolerance Has Limited Potential to Buffer Ectotherms from Global Warming. Proceedings of the Royal Society B: Biological Sciences, 282, Article ID: 20150401. https://doi.org/10.1098/rspb.2015.0401 |
[35] | Li, H., Wang, Z., Mei, W. and Ji, X. (2009) Temperature Acclimation Affects Thermal Preference and Tolerance in Three Eremias Lizards (Lacertidae). Current Zoology, 55, 258-265. https://doi.org/10.1093/czoolo/55.4.258 |
[36] | 顾重建, 金建钰, 上官福根, 等. 温度驯化对红耳滑龟幼龟选择体温、热耐受性和抗氧化酶活性的影响[J]. 生态学报, 2016, 36(6): 1737-1745. |
[37] | Yang, J., Sun, Y., An, H. and Ji, X. (2007) Northern Grass Lizards (Takydromus septentrionalis) from Different Populations Do Not Differ in Thermal Preference and Thermal Tolerance When Acclimated under Identical Thermal Conditions. Journal of Comparative Physiology B, 178, 343-349. https://doi.org/10.1007/s00360-007-0227-7 |
[38] | Fan, X.L., Lin, Z.H. and Scheffers, B.R. (2021) Physiological, Developmental, and Behavioral Plasticity in Response to Thermal Acclimation. Journal of Thermal Biology, 97, Article ID: 102866. https://doi.org/10.1016/j.jtherbio.2021.102866 |
[39] | Jiménez, A.G. and Nash-Braun, E. (2023) Enzymatic Responses Reveal Different Physiological Strategies Employed by Eurytolerant Fish during Extreme Hot and Cold Cycling Acclimation Temperatures. Journal of Thermal Biology, 114, 103578. https://doi.org/10.1016/j.jtherbio.2023.103578 |
[40] | Ma, Q. (2013) Role of NRF2 in Oxidative Stress and Toxicity. Annual Review of Pharmacology and Toxicology, 53, 401-426. https://doi.org/10.1146/annurev-pharmtox-011112-140320 |
[41] | Hurtado-Carneiro, V., Dongil, P., Pérez-García, A., Álvarez, E. and Sanz, C. (2021) Preventing Oxidative Stress in the Liver: An Opportunity for GLP-1 and/or Pask. Antioxidants, 10, Article 2028. https://doi.org/10.3390/antiox10122028 |
[42] | Powers, S.K. and Jackson, M.J. (2008) Exercise-induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiological Reviews, 88, 1243-1276. https://doi.org/10.1152/physrev.00031.2007 |
[43] | Zhang, X., Niu, Y., Zhang, H., Xu, T., Zeng, Q., Storey, K.B., et al. (2021) The Effect of Long-Term Cold Acclimation on Redox State and Antioxidant Defense in the High-Altitude Frog, Nanorana pleskei. Journal of Thermal Biology, 99, Article ID: 103008. https://doi.org/10.1016/j.jtherbio.2021.103008 |
[44] | Ritchie, D.J. and Friesen, C.R. (2022) Invited Review: Thermal Effects on Oxidative Stress in Vertebrate Ectotherms. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 263, Article ID: 111082. https://doi.org/10.1016/j.cbpa.2021.111082 |
[45] | Li, S., Li, J., Chen, W., Xu, Z., Xie, L. and Zhang, Y. (2021) Effects of Simulated Heat Wave on Oxidative Physiology and Immunity in Asian Yellow Pond Turtle (Mauremys mutica). Frontiers in Ecology and Evolution, 9, Article 704105. https://doi.org/10.3389/fevo.2021.704105 |