|
基于Transformer-LSTM模型的股票预测
|
Abstract:
近年来,全球经济金融环境动荡不安,充满挑战与风险,在此情况下,投资者在金融交易方面的抉择更加复杂,股票交易市场也面临着更大的挑战,传统的计量经济学模型难以充分适应此类变化。本文运用深度学习中的长短期记忆(LSTM)神经网络作为基本模型对股票数据的收盘价进行预测,选用京粮控股(000505)、东北制药(000597)和中钢国际(000928)三组数据,并在LSTM神经网络中引入Transformer模型。经实验,该模型的预测精度有明显提升,说明Transformer-LSTM网络模型在股票预测领域具有一定的可靠性。
In recent years, the global economic and financial environment has been volatile and full of challenges and risks. In this situation, investors’ choices in financial trading have become more complex, and the stock trading market is also facing greater challenges. Traditional econometric models are difficult to fully adapt to such changes. This article uses the Long Short-Term Memory (LSTM) neural network in deep learning as the basic model to predict the closing price of stock data. Three sets of data from Jingliang Holdings (000505), Northeast Pharmaceutical (000597), and Zhonggang International (000928) are selected, and the Transformer model is introduced into the LSTM neural network. Through experiments, the prediction accuracy of the model has been significantly improved, indicating that the Transformer LSTM network model has certain reliability in the field of stock prediction.
[1] | 苏治, 卢曼, 李德轩. 深度学习的金融实证应用: 动态、贡献与展望[J]. 金融研究, 2017(5): 111-126. |
[2] | Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 735-780. https://doi.org/10.1162/neco.1997.9.8.1735 |
[3] | 赵薇. 基于LSTM神经网络的金融数据预测分析[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2020. |
[4] | 孙瑞奇. 基于LSTM神经网络的美股股指价格趋势预测模型的研究[D]: [硕士学位论文]. 北京: 首都经济贸易大学, 2016. |
[5] | 赵红蕊, 薛雷. 基于LSTM-CNN-CBAM模型的股票预测研究[J]. 计算机工程与应用, 2021, 57(3): 203-207. |
[6] | 陈治颖. LSTM模型优化及其在中国股票指数预测中的对比研究[D]: [硕士学位论文]. 济南: 山东财经大学, 2024. |
[7] | 孟祥福, 石皓源. 基于Transformer模型的时序数据预测方法综述[J]. 计算机科学与探索, 2025, 19(1): 45-64. |
[8] | 郑国杰. 基于互联网投资者情绪的股票时间序列分析与预测[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2019. |
[9] | 危冰淋, 刘春雨, 刘家鹏. 基于Transformer-LSTM模型的多因素碳排放权交易价格预测[J]. 价格月刊, 2024(5): 49-57. |