全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于非齐次泊松过程的新疆地震发生预测研究
Research on the Prediction of Earthquake Occurrence in Xinjiang Based on Non-Homogeneous Poisson Process

DOI: 10.12677/aam.2025.145263, PP. 339-347

Keywords: 非齐次泊松过程,复合非齐次泊松过程,地震发生
Non-Homogeneous Poisson Process
, Compound Non-Homogeneous Poisson Process, Earthquake Occurrence

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究针对地震灾害的随机性与时变性特征,提出基于非齐次泊松过程(NHPP)与复合非齐次泊松过程(CNHPP)的地震预测建模框架。以新疆地区2012~2021年地震观测数据为基准,构建地震发生频率与经济损失的联合预测模型。实证结果显示:模型对2024年地震频次的预测期望值为213次(标准差14.63),经济损失的期望值达287,819元(标准差19,679)。研究成果不仅揭示了地震风险的时空异质性与地震频次、造成经济损失的动态变化关系,更为区域地震应急资源的动态调度与韧性城市的建设提供了量化决策工具。
This study proposes a seismic prediction modeling framework based on the non-homogeneous Poisson process (NHPP) and the compound non-homogeneous Poisson process (CNHPP) in response to the stochastic and time-varying characteristics of earthquake disasters. Taking the seismic observation data of Xinjiang region from 2012 to 2021 as the benchmark, a joint prediction model of earthquake occurrence frequency and economic loss is constructed. Empirical results show that the expected value of the predicted number of earthquakes in 2024 is 213 (standard deviation 14.63), and the expected value of economic loss is 287,819 yuan (standard deviation 19,679). The research results not only reveal the spatio-temporal heterogeneity of earthquake risks and the dynamic changes in earthquake frequency and economic losses caused, but also provide a quantitative decision-making tool for the dynamic scheduling of regional earthquake emergency resources and the construction of resilient cities.

References

[1]  梁梓豪, 苗鹏宇, Wang Jianming, 等. 基于随机森林方法的地震损失预测[J]. 地震学报, 2024, 46(4): 649-662.
[2]  沈健, 李梦瑶. 基于改进模糊支持向量回归模型的地震人员伤亡预测研究[J]. 价值工程, 2025, 44(7): 101-104.
[3]  谢家智, 车四方, 林涌. 基于随机权神经网络的地震灾害经济损失评估与预测[J]. 灾害学, 2017, 32(1): 1-4+10.
[4]  李洪兵, 唐成浩, 韩咪, 等. SSA-BP神经网络模型在地震伤亡人数预测中的应用[J]. 安全, 2024, 45(4): 82-88.
[5]  陈长云, 尹海权. 新疆地区现今地壳变形特征与强震危险性概率预测[J/OL]. 地震地质: 1-21.
http://kns.cnki.net/kcms/detail/11.2192.P.20250415.1431.008.html, 2025-04-23.
[6]  S.M.劳斯. 随机过程(第二版) [M]. 北京: 机械工业出版社, 2013: 48-49.
[7]  孙荣恒. 随机过程及其应用[M]. 北京: 清华大学出版社, 2004: 50-60.
[8]  新疆维吾尔自治区统计局. 新疆统计年鉴[M]. 北京: 中国统计出版社, 2013-2022.
[9]  (美)道格拉斯C.蒙哥马利, (美)伊丽莎白A.派克, (美) G.杰弗里∙瓦伊宁, 著. 线性回归分析导论[M]. 王辰勇, 译. 北京: 机械工业出版社, 2016: 9-10.
[10]  Grabski, F. (2020) Nonhomogeneus Generalisations of Poisson Process in the Modeling of Random Processes Related to Road Accidents. Maritime Technical Journal, 222, 29-42.
https://doi.org/10.2478/sjpna-2020-0009
[11]  Grabski, F. (2018) Nonhomogeneous Stochastic Processes Connected to Poisson Process. Maritime Technical Journal, 213, 5-15.
https://doi.org/10.2478/sjpna-2018-0009

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133