全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

加味当归补血汤干预糖尿病肾病的网络药理学研究
Network Pharmacological Study on the Intervention of Modified Danggui Buxue Decoction in Diabetic Kidney Disease

DOI: 10.12677/tcm.2025.145326, PP. 2191-2199

Keywords: 当归补血汤,糖尿病肾病,p53,Sirt1,网络药理学
Danggui Buxue Decoction
, Diabetic Kidney Disease, p53, Sirt1, Network Pharmacology

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:通过网络药理学预测加味当归补血汤抗糖尿病肾病(diabetic kidney disease, DKD)的关键靶点与信号通路。方法:从TCMSP数据库筛选出加味当归补血汤(黄芪、当归、丹参、牡丹皮)有效成分及作用靶点,从GeneCards、OMIM、TTD数据库筛选出DKD疾病靶点,二者取交集得到成分–疾病交集靶点,再经过STRING数据库建立PPI网络,Cytoscape 3.10.1软件可视化预测关键靶点及通路,再利用DAVID生物信息数据库进行GO和KEGG通路富集分析,并使用微生信在线网站绘制气泡图展示富集分析结果。结果:筛选出关键靶点28个,有p53、TNF、JUN、IL6、MAPK1、Sirt1等。GO和KEGG预测出加味当归补血汤的关键信号通路有p53与Sirt1相关信号通路等。结论:加味当归补血汤包含多种活性成分及靶点,能够通过p53、Sirt1等多条氧化应激、炎症、凋亡及纤维化通路,协同干预DKD的发生及发展。
Objective: To predict key targets and signaling pathways of Modified Danggui Buxue Decoction against diabetic kidney disease (DKD) through network pharmacology. Methods: Active components and targets of Modified Danggui Buxue Decoction (Astragalus, Angelica, Salvia, Moutan Cortex) were screened from the TCMSP database. Disease targets of DKD were obtained from GeneCards, OMIM, and TTD databases. Intersection targets between components and diseases were identified. A PPI network was constructed using the STRING database and visualized via Cytoscape 3.10.1 to predict key targets and pathways. GO and KEGG pathway enrichment analyses were performed using the DAVID database, with results displayed as bubble plots via the microbioinformatics online platform. Results: Twenty-eight key targets were identified, including p53, TNF, JUN, IL6, MAPK1, and Sirt1. GO and KEGG analyses revealed critical pathways such as p53 and Sirt1-related signaling pathways. Conclusion: Modified Danggui Buxue Decoction contains multiple active components and targets, exerting synergistic effects against DKD progression through oxidative stress, inflammation, apoptosis, and fibrosis pathways involving p53, Sirt1, and others.

References

[1]  Tang, C., Ma, Z., Zhu, J., Liu, Z., Liu, Y., Liu, Y., et al. (2019) P53 in Kidney Injury and Repair: Mechanism and Therapeutic Potentials. Pharmacology & Therapeutics, 195, 5-12.
https://doi.org/10.1016/j.pharmthera.2018.10.013
[2]  Ganugula, R., Nuthalapati, N.K., Dwivedi, S., Zou, D., Arora, M., Friend, R., et al. (2023) Nanocurcumin Combined with Insulin Alleviates Diabetic Kidney Disease through P38/P53 Signaling Axis. Journal of Controlled Release, 353, 621-633.
https://doi.org/10.1016/j.jconrel.2022.12.012
[3]  Wang, J., Pan, J., Li, H., Long, J., Fang, F., Chen, J., et al. (2018) LncRNA ZEB1-AS1 Was Suppressed by P53 for Renal Fibrosis in Diabetic Nephropathy. Molecular Therapy Nucleic Acids, 12, 741-750.
https://doi.org/10.1016/j.omtn.2018.07.012
[4]  Overstreet, J.M., Gifford, C.C., Tang, J., Higgins, P.J. and Samarakoon, R. (2022) Emerging Role of Tumor Suppressor P53 in Acute and Chronic Kidney Diseases. Cellular and Molecular Life Sciences, 79, Article No. 474.
https://doi.org/10.1007/s00018-022-04505-w
[5]  Wu, Q., Zhang, T., Chen, H., Yu, X., Lv, J., Liu, Y., et al. (2022) The Sirtuin Family in Health and Disease. Signal Transduction and Targeted Therapy, 7, Article No. 402.
https://doi.org/10.1038/s41392-022-01257-8
[6]  Manjula, R., Anuja, K. and Alcain, F.J. (2021) SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases. Frontiers in Pharmacology, 11, Article 585821.
https://doi.org/10.3389/fphar.2020.585821
[7]  Ji, J., Tao, P., Wang, Q., Li, L. and Xu, Y. (2021) SIRT1: Mechanism and Protective Effect in Diabetic Nephropathy. Endocrine, Metabolic & Immune DisordersDrug Targets, 21, 835-842.
https://doi.org/10.2174/1871530320666201029143606
[8]  Qi, W., Hu, C., Zhao, D. and Li, X. (2022) SIRT1-SIRT7 in Diabetic Kidney Disease: Biological Functions and Molecular Mechanisms. Frontiers in Endocrinology, 13, Article 801301.
https://doi.org/10.3389/fendo.2022.801303
[9]  Kumari, A., Sodum, N., Ravichandiran, V. and Kumar, N. (2023) Role of SIRT-1 as a Target for Treatment and Prevention of Diabetic Nephropathy: A Review. Current Molecular Pharmacology, 16, 811-831.
https://doi.org/10.2174/1874467216666230109140134
[10]  Li, P., Liu, Y., Qin, X., Chen, K., Wang, R., Yuan, L., et al. (2021) SIRT1 Attenuates Renal Fibrosis by Repressing HIF-2α. Cell Death Discovery, 7, Article No. 59.
https://doi.org/10.1038/s41420-021-00443-x
[11]  Jin, D., Zhao, Y., Sun, Y., Xue, J., Li, X. and Wang, X. (2023) Jiedu Tongluo Baoshen Formula Enhances Renal Tubular Epithelial Cell Autophagy to Prevent Renal Fibrosis by Activating SIRT1/LKB1/AMPK Pathway. Biomedicine & Pharmacotherapy, 160, Article ID: 114340.
https://doi.org/10.1016/j.biopha.2023.114340
[12]  Ma, F., Wu, J., Jiang, Z., Huang, W., Jia, Y., Sun, W., et al. (2019) P53/NRF2 Mediates SIRT1’S Protective Effect on Diabetic Nephropathy. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1866, 1272-1281.
https://doi.org/10.1016/j.bbamcr.2019.04.006
[13]  Han, W., Wang, C., Yang, Z., Mu, L., Wu, M., Chen, N., et al. (2019) SRT1720 Retards Renal Fibrosis via Inhibition of HIF1A/GLUT1 in Diabetic Nephropathy. Journal of Endocrinology, 241, 85-98.
https://doi.org/10.1530/joe-18-0536
[14]  康文武, 唐倩, 严江天, 等. 糖尿病肾病中足细胞损伤机制的研究进展[J]. 华中科技大学学报(医学版), 2023, 52(2): 270-275.
[15]  郑海瑞, 贾卫国, 王国强, 等. SRT2104对小鼠糖尿病肾病发病机制及SIRT1/P53/NRF2通路的影响[J]. 临床和实验医学杂志, 2019, 18(16): 1713-1716.
[16]  赵坤霄. PI3K/AKT和Nrf2通路对糖尿病足细胞氧化损伤与凋亡的影响及肌肽的干预研究[D]: [博士学位论文]. 石家庄: 河北医科大学, 2020.
[17]  安琪, 杨宇峰, 石岩. 糖尿病肾脏病竞争性内源RNA网络构建及潜在中药预测研究[J]. 中草药, 2023, 54(2): 620-630.
[18]  宋其蔓, 徐新禹, 徐林松. 槲皮素减轻高糖条件下人肾小球内皮细胞损伤的实验研究[J]. 临床和实验医学杂志, 2020, 19(3): 256-260.
[19]  刘娅, 徐寒松, 陈永华, 等. 黄芪主要活性成分治疗糖尿病肾病作用机制的研究进展[J]. 湖南中医杂志, 2023, 39(10): 193-198.
[20]  Babu, S. and Jayaraman, S. (2020) An Update on β-Sitosterol: A Potential Herbal Nutraceutical for Diabetic Management. Biomedicine & Pharmacotherapy, 131, Article ID: 110702.
https://doi.org/10.1016/j.biopha.2020.110702
[21]  Zhang, F., Liu, Z., He, X., Li, Z., Shi, B. and Cai, F. (2020) β-Sitosterol-Loaded Solid Lipid Nanoparticles Ameliorate Complete Freund’s Adjuvant-Induced Arthritis in Rats: Involvement of NF-κB and HO-1/Nrf-2 Pathway. Drug Delivery, 27, 1329-1341.
https://doi.org/10.1080/10717544.2020.1818883
[22]  王钦汶, 戴新新, 项想, 等. 丹酚酸和丹参酮干预糖尿病肾病的分子机制研究进展[J]. 药学学报, 2019, 54(8): 1356-1363.
[23]  赵仲秋, 张诏. 丹参及其有效成分治疗糖尿病肾病的作用机制研究进展[J]. 环球中医药, 2024, 17(11): 2368-2374.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133