|
硅酸盐矿物表面溶解行为研究综述
|
Abstract:
硅酸盐矿物的表面溶解反应是控制元素地球化学循环的重要一环。文章系统综述了长石、高岭石、蒙脱石、石英等典型硅酸盐矿物在不同溶液条件下的溶解行为特征,归纳总结了硅酸盐矿物晶体结构(层状、架状)、环境条件(pH、温度、压力)及酸溶液类型(有机酸、无机酸)对其表面溶解行为的协同调控规律。文章重点探讨了典型硅酸盐矿物在不同环境中的表面溶解反应特征和机理,并进一步讨论酸化处理在环境矿物材料开发中的应用。通过综述国内外文献,文章得到了以下几点认识:1) pH对硅酸盐矿物溶解速率的调控具有相似特征,但在不同矿物类型中有细微差别;2) 酸溶液类型对硅酸盐矿物溶解存在着不同的反应机制;3) 酸蚀改变硅酸盐矿物结构及其表面性质,进而影响其表面反应性。该综述可为多元体系下硅酸盐矿物表面溶解行为及其与重金属耦合模型的构建提供了一定的理论参考。
The surface dissolution reactions of silicate minerals are a critical component in controlling geochemical element cycling. This paper systematically reviews the dissolution behavior characteristics of typical silicate minerals (e.g., feldspar, kaolinite, montmorillonite, and quartz) under varying solution conditions, and summarizes the synergistic regulatory effects of mineral crystal structures (phyllosilicate, tectosilicate), environmental conditions (pH, temperature, pressure), and acid solution types (organic/inorganic acids) on their surface dissolution processes. The study focuses on the reaction features and mechanisms of silicate mineral surface dissolution in diverse environments, with further discussion on the application of acid treatment in developing environmental mineral materials. By synthesizing global literature, the following insights are derived: 1) pH exerts broadly similar controls on silicate mineral dissolution rates, yet exhibits subtle variations across mineral types; 2) Acid solution types govern dissolution through distinct reaction mechanisms; 3) Acid etching modifies mineral structures and surface properties, thereby influencing their surface reactivity. This review provides theoretical references for modeling surface dissolution behavior of silicate minerals in multicomponent systems and their coupling mechanisms with heavy metals.
[1] | Freedman, Y.E., Magaritz, M., Long, G.L. and Ronen, D. (1994) Interaction of Metals with Mineral Surfaces in a Natural Groundwater Environment. Chemical Geology, 116, 111-121. https://doi.org/10.1016/0009-2541(94)90160-0 |
[2] | Kasting, J. (1984) Comments on the BLAG Model; The Carbonate-Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years. American Journal of Science, 284, 1175-1182. https://doi.org/10.2475/ajs.284.10.1175 |
[3] | Oelkers, E.H. and Schott, J. (1995) Experimental Study of Anorthite Dissolution and the Relative Mechanism of Feldspar Hydrolysis. Geochimica et Cosmochimica Acta, 59, 5039-5053. https://doi.org/10.1016/0016-7037(95)00326-6 |
[4] | Tang, C. and Dong, H. (2022) The Effects of Cu2+ Adsorption on Surface Dissolution of Albite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 644, Article 128832. https://doi.org/10.1016/j.colsurfa.2022.128832 |
[5] | Stillings, L.L., Drever, J.I., Brantley, S.L., Sun, Y. and Oxburgh, R. (1996) Rates of Feldspar Dissolution at pH 3-7 with 0-8 m M Oxalic Acid. Chemical Geology, 132, 79-89. https://doi.org/10.1016/s0009-2541(96)00043-5 |
[6] | 陈传平, 梅博文, 毛治超. 二元羧酸对硅酸盐矿物溶解的实验初步研究[J]. 矿物岩石, 1993, 13(1): 103-107. |
[7] | Liu, S.K., Han, C., Liu, J.M. and Li, H. (2015) Hydrothermal Decomposition of Potassium Feldspar under Alkaline Conditions. RSC Advances, 5, 93301-93309. https://doi.org/10.1039/c5ra17212h |
[8] | Sun, X.-T., Li, M.-R., Xing, J.-T., Li, C.-C., Yuan, G.-H. and Cao, Y.-C. (2021) The Complex Effect of Organic Acids on the Dissolution of Feldspar at High Temperature. Environmental Earth Sciences, 80, Article No. 244. https://doi.org/10.1007/s12665-021-09537-2 |
[9] | 陈月娇, 施泽明, 吕锡银. 酸碱度、低分子有机酸和反应时间对富磷水体中钠长石吸附铀的影响规律[J]. 山西冶金, 2021, 44(5): 34-38. |
[10] | Welch, S.A. and Ullman, W.J. (1993) The Effect of Organic Acids on Plagioclase Dissolution Rates and Stoichiometry. Geochimica et Cosmochimica Acta, 57, 2725-2736. https://doi.org/10.1016/0016-7037(93)90386-b |
[11] | Huang, W. and Longo, J.M. (1992) The Effect of Organics on Feldspar Dissolution and the Development of Secondary Porosity. Chemical Geology, 98, 271-292. https://doi.org/10.1016/0009-2541(92)90189-c |
[12] | Gruber, C., Kutuzov, I. and Ganor, J. (2016) The Combined Effect of Temperature and pH on Albite Dissolution Rate under Far-From-Equilibrium Conditions. Geochimica et Cosmochimica Acta, 186, 154-167. https://doi.org/10.1016/j.gca.2016.04.046 |
[13] | 罗孝俊, 杨卫东. 有机酸对长石溶解度影响的热力学研究[J]. 矿物学报, 2001, 21(2): 183-188. |
[14] | Khawmee, K., Suddhiprakarn, A., Kheoruenromne, I., Bibi, I. and Singh, B. (2013) Dissolution Behaviour of Soil Kaolinites in Acidic Solutions. Clay Minerals, 48, 447-461. https://doi.org/10.1180/claymin.2013.048.3.02 |
[15] | 赵晨, 马智, 齐小周, 等. 酸和碱处理对内蒙古煤系高岭土结构和裂化性能的影响[J]. 工业催化, 2007, 15(1): 14. |
[16] | Wang, X., Li, Q., Hu, H., Zhang, T. and Zhou, Y. (2005) Dissolution of Kaolinite Induced by Citric, Oxalic, and Malic Acids. Journal of Colloid and Interface Science, 290, 481-488. https://doi.org/10.1016/j.jcis.2005.04.066 |
[17] | Lin, S., Yu, Y., Zhang, Z., Zhang, C., Zhong, M., Wang, L., et al. (2020) The Synergistic Mechanisms of Citric Acid and Oxalic Acid on the Rapid Dissolution of Kaolinite. Applied Clay Science, 196, Article 105756. https://doi.org/10.1016/j.clay.2020.105756 |
[18] | 胡华锋, 程璞, 王兴祥, 等. 柠檬酸, 草酸和苹果酸对高岭石的溶解作用[J]. 土壤通报, 2013, 44(3): 635-640. |
[19] | Sutheimer, S.H., Maurice, P.A. and Zhou, Q. (1999) Dissolution of Well and Poorly Crystallized Kaolinites; Al Speciation and Effects of Surface Characteristics. American Mineralogist, 84, 620-628. https://doi.org/10.2138/am-1999-0415 |
[20] | Cama, J. and Ganor, J. (2006) The Effects of Organic Acids on the Dissolution of Silicate Minerals: A Case Study of Oxalate Catalysis of Kaolinite Dissolution. Geochimica et Cosmochimica Acta, 70, 2191-2209. https://doi.org/10.1016/j.gca.2006.01.028 |
[21] | Valášková, M., Barabaszová, K., Hundáková, M., Ritz, M. and Plevová, E. (2011) Effects of Brief Milling and Acid Treatment on Two Ordered and Disordered Kaolinite Structures. Applied Clay Science, 54, 70-76. https://doi.org/10.1016/j.clay.2011.07.014 |
[22] | Zhou, Y., Cheng, H., Wei, C. and Zhang, Y. (2021) Effect of Acid Activation on Structural Evolution and Surface Charge of Different Derived Kaolinites. Applied Clay Science, 203, Article 105997. https://doi.org/10.1016/j.clay.2021.105997 |
[23] | 钟山, 孙世群, 陈天虎, 等. 盐酸酸溶对蒙脱石结构的影响[J]. 硅酸盐学报, 2006, 34(9): 1162-1166. |
[24] | 高铜熙, 孙红娟, 彭同江, 等. 蒙脱石在硫酸溶液中的特征变化与反应过程[J]. 矿物学报, 2023, 43(1): 75-82. |
[25] | Tyagi, B., Chudasama, C.D. and Jasra, R.V. (2006) Determination of Structural Modification in Acid Activated Montmorillonite Clay by FT-IR Spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64, 273-278. https://doi.org/10.1016/j.saa.2005.07.018 |
[26] | Steudel, A., Batenburg, L.F., Fischer, H.R., Weidler, P.G. and Emmerich, K. (2009) Alteration of Swelling Clay Minerals by Acid Activation. Applied Clay Science, 44, 105-115. https://doi.org/10.1016/j.clay.2009.02.002 |
[27] | Krupskaya, V., Zakusin, S., Tyupina, E., Dorzhieva, O., Zhukhlistov, A., Belousov, P., et al. (2017) Experimental Study of Montmorillonite Structure and Transformation of Its Properties under Treatment with Inorganic Acid Solutions. Minerals, 7, Article 49. https://doi.org/10.3390/min7040049 |
[28] | 张冬青. 草酸对蒙脱石的作用及机理研究[J]. 环境科技, 2015, 28(3): 12-16. |
[29] | Yan, F., Shi, Y., Tian, Y., Zheng, H., Hu, Q. and Yu, J. (2023) Mechanism Analysis of Hydrochloric and Acetic Acids Dissolving Clay Minerals. Geoenergy Science and Engineering, 222, Article 211469. https://doi.org/10.1016/j.geoen.2023.211469 |
[30] | Ramos, M.E., Cappelli, C., Rozalen, M., Fiore, S. and Huertas, F.J. (2011) Effect of Lactate, Glycine, and Citrate on the Kinetics of Montmorillonite Dissolution. American Mineralogist, 96, 768-780. https://doi.org/10.2138/am.2011.3694 |
[31] | Huang, L., Hu, H., Li, X. and Li, L.Y. (2010) Influences of Low Molar Mass Organic Acids on the Adsorption of Cd2+ and Pb2+ by Goethite and Montmorillonite. Applied Clay Science, 49, 281-287. https://doi.org/10.1016/j.clay.2010.06.005 |
[32] | Bhattacharyya, K.G. and Gupta, S.S. (2007) Adsorptive Accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from Water on Montmorillonite: Influence of Acid Activation. Journal of Colloid and Interface Science, 310, 411-424. https://doi.org/10.1016/j.jcis.2007.01.080 |
[33] | Wu, P., Zhang, Q., Dai, Y., Zhu, N., Dang, Z., Li, P., et al. (2011) Adsorption of Cu(II), Cd(II) and Cr(III) Ions from Aqueous Solutions on Humic Acid Modified Ca-Montmorillonite. Geoderma, 164, 215-219. https://doi.org/10.1016/j.geoderma.2011.06.012 |
[34] | 陈修, 曲希玉, 邱隆伟, 等. 石英溶解特征及机理的水热实验研究[J]. 矿物岩石地球化学通报, 2015 (5): 1027-1033. |
[35] | Choi, J., Chae, B. and Kim, H. (2015) Effects of Temperature and Pressure on Quartz Dissolution. The Journal of Engineering Geology, 25, 1-8. https://doi.org/10.9720/kseg.2015.1.1 |
[36] | Zhang, R., Zhang, X. and Hu, S. (2015) Dissolution Kinetics of Quartz in Water at High Temperatures across the Critical State of Water. The Journal of Supercritical Fluids, 100, 58-69. https://doi.org/10.1016/j.supflu.2015.02.010 |
[37] | Bennett, P.C. (1991) Quartz Dissolution in Organic-Rich Aqueous Systems. Geochimica et Cosmochimica Acta, 55, 1781-1797. https://doi.org/10.1016/0016-7037(91)90023-x |
[38] | Blake, R.E. and Walter, L.M. (1999) Kinetics of Feldspar and Quartz Dissolution at 70-80°C and Near-Neutral pH: Effects of Organic Acids and NaCl. Geochimica et Cosmochimica Acta, 63, 2043-2059. https://doi.org/10.1016/s0016-7037(99)00072-1 |
[39] | Zhu, J., Tang, C., Wei, J., Li, Z., Laipan, M., He, H., et al. (2018) Structural Effects on Dissolution of Silica Polymorphs in Various Solutions. Inorganica Chimica Acta, 471, 57-65. https://doi.org/10.1016/j.ica.2017.10.003 |
[40] | Brantley, S.L. (1992) Kinetics of Dissolution and Precipitation; Experimental and Field Results. Water-Rock Interaction, 7, 3-6. |
[41] | Li, J., Zhang, W., Zhu, J. and Lu, J. (2016) The Influence of Citrate on Surface Dissolution and Alteration of the Micro-and Nano-Structure of Biotite. RSC Advances, 6, 112544-112551. https://doi.org/10.1039/c6ra24068b |
[42] | Baba, A.A., Olaoluwa, D.T., Alabi, A.G.F., Balogun, A.F., Ibrahim, A.S., Sanni, R.O., et al. (2017) Dissolution Behaviour of a Beryl Ore for Optimal Industrial Beryllium Compound Production. Canadian Metallurgical Quarterly, 57, 210-218. https://doi.org/10.1080/00084433.2017.1403107 |
[43] | Cappelli, C., Van Driessche, A.E.S., Cama, J. and Huertas, F.J. (2023) Alteration of Trioctahedral Micas in the Presence of Inorganic and Organic Acids. Applied Clay Science, 238, Article 106923. https://doi.org/10.1016/j.clay.2023.106923 |
[44] | Karaseva, O.N., Lakshtanov, L.Z., Khanin, D.A. and Proskuryakova, A.S. (2024) Effect of pH, CO2, and Organic Ligand on the Kinetics of Talc and Lizardite Dissolution. Geochemistry International, 62, 393-402. https://doi.org/10.1134/s0016702923700167 |
[45] | Sun, C., Yao, Z., Wang, Q., Guo, L. and Shen, X. (2023) Theoretical Study on the Organic Acid Promoted Dissolution Mechanism of Forsterite Mineral. Applied Surface Science, 614, Article 156063. https://doi.org/10.1016/j.apsusc.2022.156063 |
[46] | Lin, S., Wang, W., Wu, L., Zhong, M., Zhang, C., Yu, Y., et al. (2023) The Effect of Oxalic Acid and Citric Acid on the Modification of Wollastonite Surface. Materials, 16, Article 7704. https://doi.org/10.3390/ma16247704 |
[47] | Hartman, R.L. and Fogler, H.S. (2007) Understanding the Dissolution of Zeolites. Langmuir, 23, 5477-5484. https://doi.org/10.1021/la063699g |