全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

浙江山头郑晚中生代火山岩–二长质侵入岩岩石成因
Petrogenesis of Late Mesozoic Volcanic and Monzonitic Intrusive Rocks in Shantouzheng, Zhejiang

DOI: 10.12677/ag.2025.155070, PP. 716-730

Keywords: 山头郑,二长质侵入岩,火山岩,晚中生代,岩石成因
Shantouzheng
, Monzonitic Intrusion, Volcanic Rocks, Late Mesozoic, Petrogenesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

二长质岩石是探索深部物质组成、演化和动力学机制的理想对象,本文对浙江山头郑地区二长质侵入岩和伴生的外围火山岩开展研究,以揭示这些火山岩和侵入岩的成因联系,并为中国东南部晚中生代构造–岩浆作用机制提供制约。LA-ICP-MS锆石U-Pb年代学分析结果显示,外围流纹岩形成于139.32 ± 0.88 Ma而石英二长岩侵入体形成于105.4 ± 1.1 Ma,分别属于早白垩世早期和晚期岩浆活动产物,二者没有直接的成因联系。锆石Lu-Hf同位素组成和全岩Mg#值等信息显示,流纹岩和石英二长岩均主要来自古老地壳基底的重熔,但有不同程度的亏损幔源物质加入,其中参与形成石英二长岩的幔源物质贡献比例更高。亏损地幔物质贡献比例的升高,反映早白垩世古太平洋板块俯冲导致上覆岩石圈伸展程度增强,板片由低角度俯冲转变为高角度俯冲。
Monzonitic rocks are ideal to explore the composition, evolution and dynamics of deep materials within Earth. In this paper, monzonitic intrusion and associated peripheral volcanic rocks in the Shantouzheng area, Zhejiang Province are studied to reveal the genetic relationship between volcanic and intrusive rocks, and to provide constraints for the Late Mesozoic tectono-magmatic evolution history in SE China. LA-ICP-MS zircon U-Pb dating results show that the rhyolites were formed at 139.32 ± 0.88 Ma and the intrusive quartz monzonite was formed at 105.4 ± 1.1 Ma, which belong to the early and late episodes of Early Cretaceous magmatic activities respectively, and there is no direct genetic relationship between the two. Zircon Lu-Hf isotope compositions and Mg# values of the studied samples indicate that both rhyolites and quartz monzonites are mainly derived from remelting of ancient crustal basement, but there is obvious input of mantle materials, and the input proportion to form the quartz monzonite is higher. The increase in the contribution ratio of depleted mantle materials reflects that the overlying lithosphere extensional environment of the Early Cretaceous subduction system was enhanced, and the subducting paleo-Pacific plate changed from low angle subduction to high angle subduction.

References

[1]  Xu, Y.G., Huang, X., Ma, J., Wang, Y., Iizuka, Y., Xu, J., et al. (2004) Crust-Mantle Interaction during the Tectono-Thermal Reactivation of the North China Craton: Constraints from SHRIMP Zircon U-Pb Chronology and Geochemistry of Mesozoic Plutons from Western Shandong. Contributions to Mineralogy and Petrology, 147, 750-767.
https://doi.org/10.1007/s00410-004-0594-y
[2]  Jiang, Y., Jiang, S., Ling, H., Zhou, X., Rui, X. and Yang, W. (2002) Petrology and Geochemistry of Shoshonitic Plutons from the Western Kunlun Orogenic Belt, Xinjiang, Northwestern China: Implications for Granitoid Geneses. Lithos, 63, 165-187.
https://doi.org/10.1016/s0024-4937(02)00140-8
[3]  Wang, F., Lu, X., Lo, C., Wu, F., He, H., Yang, L., et al. (2007) Post-Collisional, Potassic Monzonite-Minette Complex (Shahewan) in the Qinling Mountains (Central China): 40Ar/39Ar Thermochronology, Petrogenesis, and Implications for the Dynamic Setting of the Qinling Orogen. Journal of Asian Earth Sciences, 31, 153-166.
https://doi.org/10.1016/j.jseaes.2007.06.002
[4]  Yang, S., Jiang, S., Jiang, Y., Zhao, K. and Fan, H. (2010) Geochemical, Zircon U-Pb Dating and Sr-Nd-Hf Isotopic Constraints on the Age and Petrogenesis of an Early Cretaceous Volcanic-Intrusive Complex at Xiangshan, Southeast China. Mineralogy and Petrology, 101, 21-48.
https://doi.org/10.1007/s00710-010-0136-4
[5]  Liu, L., Qiu, J. and Li, Z. (2013) Origin of Mafic Microgranular Enclaves (MMEs) and Their Host Quartz Monzonites from the Muchen Pluton in Zhejiang Province, Southeast China: Implications for Magma Mixing and Crust-Mantle Interaction. Lithos, 160-161, 145-163.
https://doi.org/10.1016/j.lithos.2012.12.005
[6]  Wang, W., Liu, S., Bai, X., Li, Q., Yang, P., Zhao, Y., et al. (2013) Geochemistry and Zircon U-Pb-Hf Isotopes of the Late Paleoproterozoic Jianping Diorite-Monzonite-Syenite Suite of the North China Craton: Implications for Petrogenesis and Geodynamic Setting. Lithos, 162-163, 175-194.
https://doi.org/10.1016/j.lithos.2013.01.005
[7]  Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K. and Wang, D. (2009) Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51, 537-571.
https://doi.org/10.1093/petrology/egp082
[8]  Wu, Y. and Zheng, Y. (2004) Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49, 1554-1569.
https://doi.org/10.1007/bf03184122
[9]  Anders, E. and Grevesse, N. (1989) Abundances of the Elements: Meteoritic and Solar. Geochimica et Cosmochimica Acta, 53, 197-214.
https://doi.org/10.1016/0016-7037(89)90286-x
[10]  McDonough, W.F. and Sun, S. (1995) The Composition of the Earth. Chemical Geology, 120, 223-253.
https://doi.org/10.1016/0009-2541(94)00140-4
[11]  Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray, W. and Taylor, R.Z. (2004) Are Plutons Assembled over Millions of Years by Amalgamation from Small Magma Chambers? GSA Today, 14, 4-11.
https://doi.org/10.1130/1052-5173(2004)014<0004:apaomo>2.0.co;2
[12]  Tappa, M.J., Coleman, D.S., Mills, R.D. and Samperton, K.M. (2011) The Plutonic Record of a Silicic Ignimbrite from the Latir Volcanic Field, New Mexico. Geochemistry, Geophysics, Geosystems, 12, Q10011.
https://doi.org/10.1029/2011gc003700
[13]  Lipman, P.W. and Bachmann, O. (2015) Ignimbrites to Batholiths: Integrating Perspectives from Geological, Geophysical, and Geochronological Data. Geosphere, 11, 705-743.
https://doi.org/10.1130/ges01091.1
[14]  王德滋, 周金城, 邱检生, 等. 中国东南部晚中生代花岗质火山-侵入杂岩特征与成因[J]. 高校地质学报, 2000, 6(4): 487-498.
[15]  马昌前, 李艳青. 花岗岩体的累积生长与高结晶度岩浆的分异[J]. 岩石学报, 2017, 33(5): 1479-1488.
[16]  Liu, L., Xu, X. and Zou, H. (2012) Episodic Eruptions of the Late Mesozoic Volcanic Sequences in Southeastern Zhejiang, SE China: Petrogenesis and Implications for the Geodynamics of Paleo-Pacific Subduction. Lithos, 154, 166-180.
https://doi.org/10.1016/j.lithos.2012.07.002
[17]  Jiang, Y., Jia, R., Liu, Z., Liao, S., Zhao, P. and Zhou, Q. (2013) Origin of Middle Triassic High-K Calc-Alkaline Granitoids and Their Potassic Microgranular Enclaves from the Western Kunlun Orogen, Northwest China: A Record of the Closure of Paleotethys. Lithos, 156, 13-30.
https://doi.org/10.1016/j.lithos.2012.10.004
[18]  Smithies, R.H. (2000) The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series Is Not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182, 115-125.
https://doi.org/10.1016/s0012-821x(00)00236-3
[19]  Rapp, R.P. and Watson, E.B. (1995) Dehydration Melting of Metabasalt at 8-32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36, 891-931.
https://doi.org/10.1093/petrology/36.4.891
[20]  Xu, X., Zhao, K., He, Z., Liu, L. and Hong, W. (2021) Cretaceous Volcanic-Plutonic Magmatism in SE China and a Genetic Model. Lithos, 402, Article ID: 105728.
https://doi.org/10.1016/j.lithos.2020.105728
[21]  Liu, L., Xu, X. and Xia, Y. (2016) Asynchronizing Paleo-Pacific Slab Rollback beneath SE China: Insights from the Episodic Late Mesozoic Volcanism. Gondwana Research, 37, 397-407.
https://doi.org/10.1016/j.gr.2015.09.009
[22]  Ferry, J.M. and Watson, E.B. (2007) New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154, 429-437.
https://doi.org/10.1007/s00410-007-0201-0
[23]  Zhou, X., Sun, T., Shen, W., Shu, L. and Niu, Y. (2006) Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29, 26-33.
https://doi.org/10.18814/epiiugs/2006/v29i1/004
[24]  Liu, J., Wang, S., Wang, X., Du, D., Xing, G., Fu, J., et al. (2020) Refining the Spatio-Temporal Distributions of Mesozoic Granitoids and Volcanic Rocks in SE China. Journal of Asian Earth Sciences, 201, Article ID: 104503.
https://doi.org/10.1016/j.jseaes.2020.104503
[25]  Forsyth, D. and Uyeda, S. (1975) On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal International, 43, 163-200.
https://doi.org/10.1111/j.1365-246x.1975.tb00631.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133