全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

硅/碳纳米纤维复合材料的制备及电化学性能研究
Preparation and Electrochemical Properties of Silicon/Carbon Nanofiber Composite Materials

DOI: 10.12677/ms.2025.155119, PP. 1131-1140

Keywords: 静电纺丝,硅/碳复合材料,锂离子电池
Electrospinning
, Silicon/Carbon Composite Materials, Lithium Ion Battery

Full-Text   Cite this paper   Add to My Lib

Abstract:

硅作为一种先进的锂离子电池转换型负极材料,由于其较高的理论容量和储量丰富而被广泛研究。然而,其实际应用受限于较差的本征导电性和严重的体积变化。在本研究中,通过静电纺丝法合成了具有网状结构的硅/碳纳米纤维复合材料(Si@CNFs)来解决此问题。在0.1 A g1的电流密度下,Si@CNFs首次放电比容量为1094.2 mAh g1;循环50次后,容量保留为847.4 mAh g1;在1 A g1的大电流密度下循环200次后,仍具有303.3 mAh g1的容量保留,表现出优异的循环稳定性。优异的性能表现归因于独特的网状结构为锂离子的快速传输提供了通道,硅颗粒被碳层包覆有助于抑制充放电过程中的体积膨胀,以及提高复合材料的整体导电性。
Silicon has been widely studied as an advanced conversion anode material for lithium-ion batteries due to its high theoretical capacity and abundant reserves. However, its practical application is limited by poor intrinsic conductivity and severe volume changes. In this study, silicon/carbon nanofiber composites (Si@CNFs) with a reticulated structure were synthesized by electrostatic spinning to address this issue. At a current density of 0.1 A g1, the first discharge specific capacity of Si@CNFs was 1094.2 mAh g1; after 50 cycles, the capacity retention was 847.4 mAh g1; and after 200 cycles at a high current density of 1 A g1, it still possessed a capacity retention of 303.3 mAh g1, which exhibited excellent cycling stability. The excellent performance is attributed to the unique mesh structure that provides a channel for the rapid transport of lithium ions, and the coating of silicon particles with a carbon layer that helps to inhibit the volume expansion during charging and discharging as well as to improve the overall electrical conductivity of the composites.

References

[1]  Zeng, L., Xi, H., Liu, X. and Zhang, C. (2021) Coaxial Electrospinning Construction Si@c Core-Shell Nanofibers for Advanced Flexible Lithium-Ion Batteries. Nanomaterials, 11, Article 3454.
https://doi.org/10.3390/nano11123454
[2]  Jiang, R., Yuan, H., Wei, X., Wang, H., Shin, H., Lan, J., et al. (2021) Constructing Robust and Freestanding MXene/Si@C Core-Shell Nanofibers via Coaxial Electrospinning for High Performance Li-Ion Batteries. Materials Chemistry Frontiers, 5, 8218-8228.
https://doi.org/10.1039/d1qm00823d
[3]  Pei, Y., Wang, Y., Chang, A., Liao, Y., Zhang, S., Wen, X., et al. (2023) Nanofiber-in-Microfiber Carbon/Silicon Composite Anode with High Silicon Content for Lithium-Ion Batteries. Carbon, 203, 436-444.
https://doi.org/10.1016/j.carbon.2022.11.100
[4]  Zhao, H., Li, J., Zhao, Q., Huang, X., Jia, S., Ma, J., et al. (2024) Si-Based Anodes: Advances and Challenges in Li-Ion Batteries for Enhanced Stability. Electrochemical Energy Reviews, 7, Article No. 11.
https://doi.org/10.1007/s41918-024-00214-z
[5]  Jin, Y., Zhu, B., Lu, Z., Liu, N. and Zhu, J. (2017) Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery. Advanced Energy Materials, 7, Article 1700715.
https://doi.org/10.1002/aenm.201700715
[6]  Toki, G.F.I., Hossain, M.K., Rehman, W.U., Manj, R.Z.A., Wang, L. and Yang, J. (2024) Recent Progress and Challenges in Silicon-Based Anode Materials for Lithium-Ion Batteries. Industrial Chemistry & Materials, 2, 226-269.
https://doi.org/10.1039/d3im00115f
[7]  Liu, W., Liu, J., Zhu, M., Wang, W., Wang, L., Xie, S., et al. (2020) Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes. ACS Applied Materials & Interfaces, 12, 57055-57063.
https://doi.org/10.1021/acsami.0c16865
[8]  Kong, X., Zheng, Y., Wang, Y., Liang, S., Cao, G. and Pan, A. (2019) Necklace-Like Si@C Nanofibers as Robust Anode Materials for High Performance Lithium-Ion Batteries. Science Bulletin, 64, 261-269.
https://doi.org/10.1016/j.scib.2019.01.015
[9]  Liang, J., Fan, Z., Chen, S., Zheng, S. and Wang, Z. (2021) A Novel Three-Dimensional Cross-Linked Net Structure of Submicron Si as High-Performance Anode for Libs. Journal of Alloys and Compounds, 860, Article 158433.
https://doi.org/10.1016/j.jallcom.2020.158433
[10]  Du, J., Ma, J., Liu, Z., Wang, W., Jia, H., Zhang, M., et al. (2022) Fabrication of Si@Mesocarbon Microbead (MCMB) Anode Based on Carbon Texture for Lithium-Ion Batteries. Materials Letters, 315, Article 131921.
https://doi.org/10.1016/j.matlet.2022.131921
[11]  Bishoyi, S.S. and Behera, S.K. (2024) Fabrication and Electrochemical Performance of Si-C Composite Nanostructures with SiO2 Sacrificial Agent for LIB Anode. Journal of Alloys and Compounds, 982, Article 173766.
https://doi.org/10.1016/j.jallcom.2024.173766
[12]  Wang, Q., Guo, C., He, J., Yang, S., Liu, Z. and Wang, Q. (2019) Fe2O3/C-Modified Si Nanoparticles as Anode Material for High-Performance Lithium-Ion Batteries. Journal of Alloys and Compounds, 795, 284-290.
https://doi.org/10.1016/j.jallcom.2019.05.038

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133