|
Applied Physics 2025
热探针法测量LDPE粉末有效热导率的研究
|
Abstract:
本文基于热探针法,通过设计新的测量仪器和算法,研究了粒径为(500 μm, 800 μm)和(800 μm, 1000 μm)的低密度聚乙烯(LDPE)粉末体积分数与导热系数的关系,并与各种理论预测进行了对比。实验表明,在不同体积分数下的LDPE粉末的热导率位于Bruggeman模型与Maxwell-Eucken模型之间,并通过线性拟合对体积分数在(0.35, 0.58)的LDPE粉末的有效热导率进行了拟合。
This study investigates the relationship between volume fraction and thermal conductivity of low-density polyethylene (LDPE) powders with particle size ranges of (500~800) μm and (800~1000) μm using an improved thermal probe methodology. A novel measurement apparatus and cor- responding algorithm were developed to enhance measurement accuracy. Experimental results demonstrate that the effective thermal conductivity of LDPE powders at different volume fractions falls within the bounds predicted by the Bruggeman model and Maxwell-Eucken model. Specifically, for powders with volume fractions in the range of [0.35, 0.59], a linear regression model was established to characterize the effective thermal conductivity, showing good agreement with experimental data.
[1] | 芮绍辉, 余波. 新型建筑保温隔热材料的研究及应用进展[J]. 合成材料老化与应用, 2025, 54(1): 86-89. |
[2] | Breitkopf, C. (2024) Theoretical Characterization of Thermal Conductivities for Polymers—A Review. Thermo, 4, 31-47. https://doi.org/10.3390/thermo4010004 |
[3] | Wang, J., Hu, L., Li, W., Ouyang, Y. and Bai, L. (2022) Development and Perspectives of Thermal Conductive Polymer Composites. Nanomaterials, 12, Article 3574. https://doi.org/10.3390/nano12203574 |
[4] | Ouyang, Y., Bai, L., Tian, H., Li, X. and Yuan, F. (2022) Recent Progress of Thermal Conductive Ploymer Composites: Al2O3 Fillers, Properties and Applications. Composites Part A: Applied Science and Manufacturing, 152, Article 106685. https://doi.org/10.1016/j.compositesa.2021.106685 |
[5] | 闫心雨. 八氨丙基POSS改性纳米填料/环氧树脂复合材料的制备及性能研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2024. |
[6] | 李云强. 高导热超高分子量聚乙烯免拔管材料的制备及其性能研究[D]: [硕士学位论文]. 北京: 中国矿业大学, 2024. |
[7] | 侯红伟. 基于Al2O3改性的导热环氧树脂复合材料的制备与性能研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2023. |
[8] | 牛凯, 晋华, 张永波, 等. 热探针测定装置参数实验研究[J]. 中国测试, 2016, 42(6): 29-32. |
[9] | Zhang, H., Zhao, G., Ye, H., Ge, X. and Cheng, S. (2005) An Improved Hot Probe for Measuring Thermal Conductivity of Liquids. Measurement Science and Technology, 16, 1430-1435. https://doi.org/10.1088/0957-0233/16/7/004 |
[10] | Chudzik, S., Grys, S. and Minkina, W. (2009). The Application of the Artificial Neural Network and Hot Probe Method in Thermal Parameters Determination of Heat Insulation Materials Part 1—Thermal Model Consideration. 2009 IEEE International Conference on Industrial Technology, Churchill, 10-13 February 2009, 1-6. https://doi.org/10.1109/icit.2009.4939511 |
[11] | Pilkington, B., Goodhew, S. and de Wilde, P. (2010) In Situ Thermal Conductivity Measurements of Building Materials with a Thermal Probe. Journal of Testing and Evaluation, 38, 339-346. https://doi.org/10.1520/jte102636 |
[12] | Szymczak-Graczyk, A., Gajewska, G., Laks, I. and Kostrzewski, W. (2022) Influence of Variable Moisture Conditions on the Value of the Thermal Conductivity of Selected Insulation Materials Used in Passive Buildings. Energies, 15, Article 2626. https://doi.org/10.3390/en15072626 |
[13] | Klemens, P. (2013) Thermal Conductivity 14. Springer. |
[14] | Blackwell, J.H. (1956) The Axial-Flow Error in the Thermal-Conductivity Probe. Canadian Journal of Physics, 34, 412-417. https://doi.org/10.1139/p56-048 |
[15] | Witharamage, C.S., Maddumage, M.M.B.S. and Weragoda, V.S.C. (2018) Determination of Thermal Conductivity of LDPE Using Dual Hot Wire Probe Method. 2018 Moratuwa Engineering Research Conference (MERCon), Moratuwa, 30 May-1 June 2018, 259-263. https://doi.org/10.1109/mercon.2018.8421899 |
[16] | Bioucas, F.E.B., Koller, T.M. and Fröba, A.P. (2024) Thermal Conductivity of Glycerol at Atmospheric Pressure between 268 K and 363 K by Using a Steady-State Parallel-Plate Instrument. International Journal of Thermophysics, 45, Article No. 52. https://doi.org/10.1007/s10765-024-03347-x |
[17] | Woodside, W. and Messmer, J.H. (1961) Thermal Conductivity of Porous Media. I. Unconsolidated Sands. Journal of Applied Physics, 32, 1688-1699. https://doi.org/10.1063/1.1728419 |
[18] | Godbee, H.W. and Ziegler, W.T. (1966) Thermal Conductivities of MgO, Al2O3, and ZrO2 Powders to 850°C. II. Theoretical. Journal of Applied Physics, 37, 56-65. https://doi.org/10.1063/1.1707891 |
[19] | Qiu, L., Du, Y., Bai, Y., Feng, Y., Zhang, X., Wu, J., et al. (2021) Experimental Characterization and Model Verification of Thermal Conductivity from Mesoporous to Macroporous SiOC Ceramics. Journal of Thermal Science, 30, 465-476. https://doi.org/10.1007/s11630-021-1422-7 |
[20] | Ordonez-Miranda, J., Ezzahri, Y., Joulain, K., Drevillon, J. and Alvarado-Gil, J.J. (2018) Modeling of the Electrical Conductivity, Thermal Conductivity, and Specific Heat Capacity of VO2. Physical Review B, 98, Article 075144. https://doi.org/10.1103/physrevb.98.075144 |