|
Applied Physics 2025
不同高径比下筒仓内壁法向应力及超压系数的测量研究
|
Abstract:
当前针对筒仓卸料过程中超压现象的研究中,受限于实验测量手段或模拟假设条件,尚缺乏对不同高径比条件下超压分布规律的系统实验验证。为此,本文针对现有实验方法的不足,设计了一种改进的筒仓内壁法向应力测量系统,搭建半圆锥形筒仓模型,测量粒径为1.29 mm的玻璃珠在静态堆积和卸料过程中的壁面法向应力,并计算卸料过程中最大动态应力与静态应力的比值(即超压系数)。实验设置了不同填充高度,分别代表浅仓与深仓工况,系统分析了卸料过程中超压系数的时空分布特征。结果表明:静态阶段颗粒发生沉降与重排,使应力逐渐趋于稳定;卸料阶段动态应力显著增加,并在H = 135 mm处达到峰值。不同填充高度下,最大超压系数位置略有差异,但均集中于圆柱形中下部,最大值达到3.31。漏斗段尤其靠近卸料口区域的超压现象相对较弱。本研究揭示了高径比对筒仓内壁应力与超压分布的影响,为筒仓结构设计与卸料安全提供了可靠实验依据。
Current studies on overpressure phenomena during silo discharge are often limited by experimental constraints or simplified simulation assumptions, and lack systematic experimental validation under varying height-to-diameter (H/D) ratios. To address this gap, an improved wall normal pressure measurement system was developed in this study. A semi-conical silo model was constructed to measure the wall normal stress of 1.29 mm glass beads during static packing and discharge. The overpressure coefficient—defined as the ratio of the maximum dynamic pressure during discharge to the corresponding static pressure—was calculated. The experiments were conducted at different filling heights, representing both shallow and deep silo conditions, to analyze the spatiotemporal distribution of overpressure coefficients. Results show that during the static phase, particle rearrangement and settling lead to pressure stabilization; in the discharge phase, dynamic pressure significantly increases and reaches its peak at H = 135 mm. Although the position of the maximum overpressure coefficient varies slightly with filling height, it consistently appears in the mid-lower region of the cylindrical section, with a maximum value of 3.31. In contrast, the overpressure effect is notably weaker in the hopper section, especially near the outlet. This study reveals the influence of height-to-diameter ratio on the wall pressure and overpressure distribution in silos and provides reliable experimental evidence for structural design and safe discharge operations.
[1] | 陆坤权, 刘寄星. 颗粒物质(上) [J]. 物理, 2004, 33(9): 629-635. |
[2] | 陆坤权, 刘寄星. 颗粒物质(下) [J]. 物理, 2004(10): 713-721. |
[3] | Couto, A., Ruiz, A. and Aguado, P.J. (2013) Experimental Study of the Pressures Exerted by Wheat Stored in Slender Cylindrical Silos, Varying the Flow Rate of Material during Discharge. Comparison with Eurocode 1 Part 4. Powder Technology, 237, 450-467. https://doi.org/10.1016/j.powtec.2012.12.030 |
[4] | Saleh, K., Golshan, S. and Zarghami, R. (2018) A Review on Gravity Flow of Free-Flowing Granular Solids in Silos – Basics and Practical Aspects. Chemical Engineering Science, 192, 1011-1035. https://doi.org/10.1016/j.ces.2018.08.028 |
[5] | Khalil, M., Ruggieri, S. and Uva, G. (2022) Assessment of Structural Behavior, Vulnerability, and Risk of Industrial Silos: State-Of-The-Art and Recent Research Trends. Applied Sciences, 12, Article 3006. https://doi.org/10.3390/app12063006 |
[6] | 段君峰, 韩阳, 李东桥, 等. 中欧美钢筋混凝土筒仓规范对比研究[J]. 河南工业大学学报(自然科学版), 2019, 40(1): 108-112. |
[7] | Jing, H., Wang, X., Yang, J. and Chen, H. (2022) Static and Seismic Pressure of Cylindrical Steel Silo Model with Granular Materials. Journal of Constructional Steel Research, 198, Article ID: 107515. https://doi.org/10.1016/j.jcsr.2022.107515 |
[8] | 祝振兴, 朱建平, 曹勇, 等. 中欧钢筋混凝土筒仓设计规范比较[J]. 水泥工程, 2013(3): 14-16, 26. |
[9] | 屠居贤, 杨建斌. 模型筒仓卸料试验和仓壁压力计算[J]. 烟台大学学报(自然科学与工程版), 1998(3): 212-217. |
[10] | 孙启帅. 立筒仓粮食散体卸料时动态侧压力及影响因素分析[D]: [硕士学位论文]. 郑州: 河南工业大学, 2022. |
[11] | 曾丁, 黄文彬, 华云龙. 筒仓壁压的有限元分析[J]. 农业工程学报, 1998(2): 50-54. |
[12] | 原方, 刘海林, 程远浩, 杜乾. 深浅仓卸料压力离散元数值模拟研究[J]. 河南工业大学学报(自然科学版), 2020, 41(1): 117-123. |
[13] | 陈长冰, 梁醒培. 筒仓卸料过程的离散元模拟分析[J]. 粮油食品科技, 2008(1): 11-13. |
[14] | An, H., Wang, X., Fang, X., Liu, Z. and Liang, C. (2021) Wall Normal Stress Characteristics in an Experimental Coal Silo. Powder Technology, 377, 657-665. https://doi.org/10.1016/j.powtec.2020.09.016 |
[15] | Gandia, R.M., Gomes, F.C., Paula, W.C.D., Oliveira Junior, E.A.D. and Aguado Rodriguez, P.J. (2021) Static and Dynamic Pressure Measurements of Maize Grain in Silos under Different Conditions. Biosystems Engineering, 209, 180-199. https://doi.org/10.1016/j.biosystemseng.2021.07.001 |
[16] | Gandia, R.M., Gomes, F.C., Paula, W.C.D. and Aguado Rodriguez, P.J. (2021) Evaluation of Pressures in Slender Silos Varying Hopper Angle and Silo Slenderness. Powder Technology, 394, 478-495. https://doi.org/10.1016/j.powtec.2021.08.087 |
[17] | Zhang, D., Xu, Q., Wang, S., et al. (2017) Simulation and Experimental Validation of Silo Wall Pressure during Discharging. Transactions of the Chinese Society of Agricultural Engineering, 33, 272-278. |
[18] | 周长明. 筒仓卸料流态及仓壁侧压力的试验与模拟研究[D]: [硕士学位论文]. 郑州: 河南工业大学, 2020. |
[19] | Feng, Y. and Liu, J. (2019) Dynamic Simulation Analysis of Elastic Overpressure Fluctuation on Silo Wall for the Arch Action. Journal of Vibroengineering, 21, 1045-1057. https://doi.org/10.21595/jve.2019.20493 |
[20] | 王冠, 赵登鲁, 华云松. 筒仓内壁静态与动态法向应力的测量与分析[J]. 物理化学进展, 2025, 14(1): 48-58. |
[21] | Schulze, D. (2014) Powders and Bulk Solids: Behavior, Characterization, Storage and Flow Schulze, Dietmar. Springer. |
[22] | Shah, A., Bangash, J.I., Khan, A.W., Ahmed, I., Khan, A., Khan, A., et al. (2022) Comparative Analysis of Median Filter and Its Variants for Removal of Impulse Noise from Gray Scale Images. Journal of King Saud University—Computer and Information Sciences, 34, 505-519. https://doi.org/10.1016/j.jksuci.2020.03.007 |
[23] | Wang, X., Liang, C., Guo, X., Chen, Y., Liu, D., Ma, J., et al. (2020) Experimental Study on the Dynamic Characteristics of Wall Normal Stresses during Silo Discharge. Powder Technology, 363, 509-518. https://doi.org/10.1016/j.powtec.2020.01.023 |
[24] | Wang, M.M., Wang, J.-., Pang, W.D. and Liang, C. (2016) Photoelastic Experiments on Force Chain Evolution in Granular Materials under Bilateral Flowing Conditions. In: Li, X., Feng, Y. and Mustoe, G., Eds., Proceedings of the 7th International Conference on Discrete Element Methods, Springer, 1411-1417. https://doi.org/10.1007/978-981-10-1926-5_145 |
[25] | Wang, M., Zheng, J. and Xue, S. (2024) Mechanics and Stability of Force Chain Arch in Excavated Granular Material. Applied Sciences, 14, Article 2485. https://doi.org/10.3390/app14062485 |
[26] | Wang, X., Li, B., Xia, R. and Ma, H. (2020) Stress Analysis of Silos Using Dem. In: Wang, X., Li, B., Xia, R. and Ma, H., Eds., Engineering Applications of Computational Methods, Springer, 123-138. https://doi.org/10.1007/978-981-15-7977-6_7 |