The integration of nanomaterials into photovoltaic (PV) cells has emerged as a transformative approach to overcoming the efficiency limitations of conventional solar technologies. This study investigates the role of advanced nanomaterials, including titanium dioxide (TiO2) nanoparticles, graphene derivatives, and perovskite nanocrystals, in enhancing light absorption and overall energy conversion efficiency in photovoltaic cells. Utilizing state-of-the-art fabrication techniques such as chemical vapor deposition and spin coating, we engineered PV devices with optimized nanomaterial layers to improve light trapping and charge carrier dynamics. Optical characterization revealed a significant enhancement in light absorption across a broad spectral range, while electrical performance analyses demonstrated an efficiency improvement of up to XX% compared to standard PV cells without nanomaterial integration. The study further explores the mechanisms behind these improvements, including plasmonic effects, reduced recombination rates, and enhanced charge mobility. Our findings highlight the potential of nanomaterial-based strategies to advance next-generation solar technologies, offering scalable solutions for higher efficiency and more sustainable energy production.
References
[1]
Green, M.A., Dunlop, E.D., Hohl‐Ebinger, J., Yoshita, M., Kopidakis, N. and Hao, X. (2020) Solar Cell Efficiency Tables (Version 56). Progress in Photovoltaics: Research and Applications, 28, 629-638. https://doi.org/10.1002/pip.3303
[2]
Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051. https://doi.org/10.1021/ja809598r
[3]
You, J., Dou, L., Hong, Z., Zhou, H., Yang, Y., Chen, C.C., Yang, Y., et al. (2013) Recent Trends in Organic Photovoltaic Research and Development. Advanced Materials, 25, 3973-4011.
[4]
Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., et al. (2015) High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science, 348, 1234-1237. https://doi.org/10.1126/science.aaa9272
[5]
Chen, Q., De Marco, N., Yang, Y., Song, T., Chen, C., Zhao, H., et al. (2015) Under the Spotlight: The Organic-Inorganic Hybrid Halide Perovskite for Optoelectronic Applications. Nano Today, 10, 355-396. https://doi.org/10.1016/j.nantod.2015.04.009
[6]
Zhou, H., Chen, Q., Li, G., Luo, S., Song, T., Duan, H., et al. (2014) Interface Engineering of Highly Efficient Perovskite Solar Cells. Science, 345, 542-546. https://doi.org/10.1126/science.1254050
[7]
Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N. and Snaith, H.J. (2012) Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338, 643-647. https://doi.org/10.1126/science.1228604
[8]
Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S. and Seok, S.I. (2014) Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells. Nature Materials, 13, 897-903. https://doi.org/10.1038/nmat4014
[9]
Alam, K., Hossen, M.S., Al Imran, M., Mahmud, U., Al Fathah, A. and Mostakim, M.A. (2023) Designing Autonomous Carbon Reduction Mechanisms: A Data-Driven Approach in Renewable Energy Systems. Well Testing Journal, 32, 103-129.
[10]
Stranks, S.D. and Snaith, H.J. (2015) Metal-Halide Perovskites for Photovoltaic and Light-Emitting Devices. Nature Nanotechnology, 10, 391-402. https://doi.org/10.1038/nnano.2015.90
[11]
Gao, P., Grätzel, M. and Nazeeruddin, M.K. (2014) Organohalide Lead Perovskites for Photovoltaic Applications. Energy & Environmental Science, 7, 2448-2463. https://doi.org/10.1039/c4ee00942h
[12]
Yin, W., Shi, T. and Yan, Y. (2014) Unusual Defect Physics in CH3NH3PbI3 Perovskite Solar Cell Absorber. Applied Physics Letters, 104, Article ID: 063903. https://doi.org/10.1063/1.4864778
[13]
De Wolf, S., Holovsky, J., Moon, S., Löper, P., Niesen, B., Ledinsky, M., et al. (2014) Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. The Journal of Physical Chemistry Letters, 5, 1035-1039. https://doi.org/10.1021/jz500279b
[14]
Zhao, Y. and Zhu, K. (2014) Optical Bleaching of Perovskite (CH3NH3PbI3) Thin Films. The Journal of Physical Chemistry C, 118, 9412-9418.
[15]
Snaith, H.J. (2013) Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters, 4, 3623-3630. https://doi.org/10.1021/jz4020162
[16]
Liu, M., Johnston, M.B. and Snaith, H.J. (2013) Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature, 501, 395-398. https://doi.org/10.1038/nature12509
[17]
Zhang, W., Saliba, M., Stranks, S.D., Sun, Y., Shi, X., Wiesner, U., et al. (2013) Enhancement of Perovskite Solar Cell Performance Using Polymer-Modified ZnO Nanoparticles as the Electron Transport Layer. Nano Letters, 13, 4505-4510.
[18]
Nie, W., Tsai, H., Asadpour, R., Blancon, J., Neukirch, A.J., Gupta, G., et al. (2015) High-efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains. Science, 347, 522-525. https://doi.org/10.1126/science.aaa0472
[19]
Li, W., Zhang, W., Van Reenen, S., Sutton, R.J., Fan, J., Haghighirad, A.A., et al. (2016) Enhanced UV-Light Stability of Planar Heterojunction Perovskite Solar Cells with Caesium Bromide Interface Modification. Energy & Environmental Science, 9, 490-498. https://doi.org/10.1039/c5ee03522h
[20]
Saliba, M., Matsui, T., Domanski, K., Seo, J., Ummadisingu, A., Zakeeruddin, S.M., et al. (2016) Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance. Science, 354, 206-209. https://doi.org/10.1126/science.aah5557
[21]
Yang, J., Siempelkamp, B.D., Liu, D. and Kelly, T.L. (2015) Investigation of Ch3Nh3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques. ACS Nano, 9, 1955-1963. https://doi.org/10.1021/nn506864k
[22]
Jena, A.K., Kulkarni, A. and Miyasaka, T. (2019) Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chemical Reviews, 119, 3036-3103. https://doi.org/10.1021/acs.chemrev.8b00539
[23]
Grancini, G. and Nazeeruddin, M.K. (2018) Dimensional Tailoring of Hybrid Perovskites for Photovoltaics. Nature Reviews Materials, 4, 4-22. https://doi.org/10.1038/s41578-018-0065-0
[24]
Tan, H., Jain, A., Voznyy, O., Lan, X., García de Arquer, F.P., Fan, J.Z., et al. (2017) Efficient and Stable Solution-Processed Planar Perovskite Solar Cells via Contact Passivation. Science, 355, 722-726. https://doi.org/10.1126/science.aai9081
[25]
Bu, T., Liu, X., Zhou, Y., Yi, J., Huang, X., Luo, L., Ku, Z., et al. (2021) Low-Temperature Processed Perovskite Solar Cells with High Efficiency and Wide-Bandgap Perovskite Absorbers. Advanced Functional Materials, 31, Article ID: 2007982.
[26]
Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., et al. (2019) Surface Passivation of Perovskite Film for Efficient Solar Cells. Nature Photonics, 13, 460-466. https://doi.org/10.1038/s41566-019-0398-2
[27]
Xiao, Z., Song, Z. and Yan, Y. (2019) From Lead Halide Perovskites to Lead-Free Metal Halide Perovskites and Perovskite Derivatives. Advanced Materials, 31, Article ID: 1803792. https://doi.org/10.1002/adma.201803792
[28]
Park, N., Grätzel, M., Miyasaka, T., Zhu, K. and Emery, K. (2016) Towards Stable and Commercially Available Perovskite Solar Cells. Nature Energy, 1, Article No. 16152. https://doi.org/10.1038/nenergy.2016.152
[29]
Islam, M.R., Rumel, M.M.H. and Alam, K. (2024) SCAPS-1D. International Journal of Scientific Engineering and Science, 8, 83-87.